【红黑树变色+旋转】

news/2024/7/3 0:08:40

文章目录

  • 一. 红黑树规则
  • 二. 情况一叔叔存在且为红
  • 情况二.变色+旋旋

一. 红黑树规则

对于红黑树,进行变色+旋转处理,终究都是为了维持颜色+以下几条规则,只有颜色和规则维持住了,红黑树就维持住了最长路径的长度不超过最短路径的两倍。

规则:

  1. 根是黑的。
  2. 没有连续的红节点。
  3. 每条路径的黑色数量相等。

二. 情况一叔叔存在且为红

注意点:红黑树插入的节点都是红色的,因为在红黑树中动黑色节点是非常忌讳的,因为要维持每条路径黑色数量相等非常困难,所以插入的节点默认都是红色的。

当插入红色节点后:1.如果父亲为黑或者父亲不存在,结束,不需要任何处理。
2. 如果父亲存在且为红,由于插入节点为红,存在连续红节点,需要处理,可以肯定的是爷爷一定是黑,因为插入节点前就是一棵红黑树了,既然父亲和爷爷颜色确定,主要看叔叔。

1.叔叔存在且为红
在这里插入图片描述
在这里插入图片描述

情况二.变色+旋旋

叔叔存在且为黑或者叔叔不存在都需变色+旋转,关键分析是左单旋,右单旋,还是左右双旋,还是右左双旋只要旋转后,就平衡了,直接结束,不需要向上更新

1. 变色+单旋
在这里插入图片描述
对于叔叔存在且为黑或不存在这种情况,不可能是因为直接插入红色节点导致连续红这种情况直接发生的,因为这发生了,原本就不是红黑树,一定是由上述图一第一种情况处理更新上来导致的。
解决办法:curp->left, pg->left 左左右单旋g点+
p变黑,g变红。
同理:如果上述情况curp->right, pg->right,右右左单旋g点+p变黑,g变红

2.变色+双旋
在这里插入图片描述
对于这种情况:curp->right, pg->left,左右双旋,
将p左旋,g右旋,+ cur变黑+g变红。

同理:curp->left, pg->right, 右左双旋,将p右旋,g左旋,+cur变黑+g变红

总结单纯变色处理,需要不停向上更新至父亲不存在或者父亲为黑结束,旋转+变色处理完就平衡了直接结束。
一下是代码实现

bool Insert(const pair<K, V>& kv)
		{
			if (_root == nullptr)
			{
				_root = new Node(kv);
				_root->_col = BLACK;	//根为黑色
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_kv.first < kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_kv.first > kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(kv);
			if (parent->_kv.first < kv.first)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			cur->_parent = parent;
			//父亲存在且为红,连续红节点,处理(如果父亲不存在管你红黑就结束了,如果为黑也结束了)
			while (parent && parent->_col == RED)
			{
				Node* grandfather = parent->_parent;  //算出爷爷,根据父亲为爷爷的左右,确定叔叔
				if (parent == grandfather->_left)
				{
					Node* uncle = grandfather->_right;
					//情况一:叔叔存在且为红 变色处理
					if (uncle && uncle->_col == RED)
					{
						parent->_col = uncle->_col = BLACK;
						grandfather->_col = RED;
						//根节点保证为黑下面处理

						//继续往上处理
						cur = grandfather;
						parent = cur->_parent;
					}
					//情况二:叔叔不存在/叔叔存在且为黑
					else
					{
						//需要判别单旋还是左旋,确定cur的位置
						//旋转+变色
						if (cur == parent->_left)
						{
							//		g
							//	 p		u
							//c
							//左左右单旋
							RotateR(grandfather);
							parent->_col = BLACK;
							grandfather->_col = RED;
						}
						else
						{
							//		g
							//	p		u
							//	   c
							//左右双旋+变色
							RotateL(parent);
							RotateR(grandfather);
							cur->_col = BLACK;
							grandfather->_col = RED;
						}
						break;	//只要旋转结束就平衡了结束
					}
				}
				else
				{
					Node* uncle = grandfather->_left;
					//情况一:叔叔存在且为红 变色处理
					if (uncle && uncle->_col == RED)
					{
						parent->_col = uncle->_col = BLACK;
						grandfather->_col = RED;
						//根节点保证为黑下面处理

						//继续往上处理
						cur = grandfather;
						parent = cur->_parent;
					}
					//情况二:叔叔不存在/叔叔存在且为黑
					else
					{
						if (cur == parent->_right)
						{
							//		g
							//	u		p
							//				c
							RotateL(grandfather);
							parent->_col = BLACK;
							grandfather->_col = RED;
						}
						else
						{
							//		g
							//	u		p
							//		 c
							//右左双旋
							RotateR(parent);
							RotateL(grandfather);
							cur->_col = BLACK;
							grandfather->_col = RED;
						}
						//只要旋转完了,就平衡结束了
						break;
					}
				}
			}
			_root->_col = BLACK;	//变色没有处理根,无论怎么处理都保证根是黑的
			return true;
		}

		void RotateL(Node* parent)
		{
			++rotateSize;
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			parent->_right = subRL;
			if (subRL)
				subRL->_parent = parent;
			subR->_left = parent;
			Node* ppnode = parent->_parent;
			parent->_parent = subR;
			if (_root == parent)
			{
				_root = subR;
				subR->_parent = nullptr;
			}
			else
			{
				if (parent == ppnode->_left)
				{
					ppnode->_left = subR;
				}
				else
				{
					ppnode->_right = subR;
				}
				subR->_parent = ppnode;
			}
		}
		void RotateR(Node* parent)
		{
			++rotateSize;
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			parent->_left = subLR;
			if (subLR)
				subLR->_parent = parent;
			subL->_right = parent;
			Node* ppnode = parent->_parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				_root = subL;
				subL->_parent = nullptr;
			}
			else
			{
				if (parent == ppnode->_left)
				{
					ppnode->_left = subL;
				}
				else
				{
					ppnode->_right = subL;
				}
				subL->_parent = ppnode;
			}
		}
		

无论怎么方式处理完都需要保证根是黑的,最后加上


http://lihuaxi.xjx100.cn/news/2196556.html

相关文章

LitCTF2024部分wp

litctf wp 第一次ak了web和misc&#xff0c;非常激动&#xff0c;感谢lictf给我这个机会 最终成果 全靠队里的密码逆向✌带飞。一个人就砍了近一半的分数 这里是我们队的wp web exx 题目名反过来就是xxe&#xff0c;考察xxe&#xff0c;查看登录的数据包 发现传的就是xml…

springboot配置集成RedisTemplate和Redisson,使用分布式锁案例

文章要点 自定义配置属性类集成配置RedisTemplate集成配置分布式锁Redisson使用分布式锁简单实现超卖方案 1. 项目结构 2. 集成RedisTemplate和Redisson 添加依赖 依赖的版本与继承的spring-boot-starter-parent工程相对应&#xff0c;可写可不写 <!--spring data redis…

48、Flink 的 Data Source API 详解

a&#xff09;概述 本节将描述 FLIP-27 中引入的新 Source API 的主要接口。 b&#xff09;Source Source API 是一个工厂模式的接口&#xff0c;用于创建以下组件。 Split EnumeratorSource ReaderSplit SerializerEnumerator Checkpoint Serializer 此外&#xff0c;Sou…

深度解析:短剧市场的发展趋势

一、 短剧视频的兴起 小程序短剧视频是近年来在社交媒体平台上崭露头角的一种内容形式&#xff0c;其独特的表达方式吸引了大量用户的关注&#xff0c;这种类型的视频通常以小幅度、短时长的剧情为主&#xff0c;具有轻松幽默的风格&#xff0c;适合在碎片化的时间作为娱乐消遣…

数据结构之ArrayList与顺序表(上)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 顺序表的学习&#xff0c;点我 上面这篇博文是关于顺序表的基础知识&#xff0c;以及顺序表的实现。…

国标GB/T 28181详解:国标GBT28181-2022的客户端主动发起历史视音频回放流程

目录 一、定义 二、作用 1、提供有效的数据回顾机制 2、增强监控系统的功能性 3、保障数据传输与存储的可靠性 4、实现精细化的操作与控制 5、促进监控系统的集成与发展 三、历史视音频回放的基本要求 四、命令流程 1、流程图 2、流程描述 五、协议接口 1、会话控…

短视频直播教学课程小程序的作用是什么

只要短视频/直播做的好&#xff0c;营收通常都不在话下&#xff0c;近些年&#xff0c;线上自媒体行业热度非常高&#xff0c;每条细分赛道都有着博主/账号&#xff0c;其各种优势条件下也吸引着其他普通人冲入。 然无论老玩家还是新玩家&#xff0c;面对平台不断变化的规则和…

易语言QQ机器人2.0源码

易语言QQ机器人2.0 效果图源码说明领取源码下期更新预报 效果图 源码说明 .程序集 Smessage, VJ_DirectUI .程序集变量 Format, StringFormat.子程序 _初始化, , , 当基于本类的对象被创建后&#xff0c;此方法会被自动调用.子程序 _销毁, , , 当基于本类的对象被销毁前&#x…