高阶数据结构--图

news/2024/7/7 18:32:28

本篇主要是介绍:图的一些常用的算法。


文章目录

  • 一、图的基本概念
  • 二、图的存储结构
    • 1、邻接矩阵
    • 2、邻接表
  • 三、图的遍历
    • 1、广度优先遍历
    • 2、深度优先遍历
  • 四、最小生成树
    • 1、Kruskal算法
    • 2、Prim算法
  • 五、最短路径
    • 1、单源最短路径--Dijkstra算法
    • 2、单源最短路径--Bellman-Ford算法
    • 3、多源最短路径--Floyd-Warshall算法

一、图的基本概念

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合; E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫 做边的集合。 (x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path(x, y)表示从x到y的一条单向通路,即 Path(x, y)是有方向的。
顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间
有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>。
有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条
边(弧),<x, y>和<y, x>是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y)
是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)
是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边<x, y>和<y, x>。

  完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,
则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个
顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4。
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依
附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶
点u,并称边<u, v>与顶点u和顶点v相关联。
顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶
点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度
是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。
注 意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶
点序列为从顶点vi到顶点vj的路径。
路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一
条路 径的路径长度是指该路径上各个边权值的总和。  
简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路
径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。

子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图。

连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任
意一对顶点都是连通的,则称此图为连通图。
强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj
vi的路径,则称此图是强连通图。
生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点
和n-1条边。

二、图的存储结构

2.1邻接矩阵

邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。

 

注意:1.无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一 定是对称的,第i行(列)元素之后就是顶点i 的出(入)度。
2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个
顶点不通,则使用无穷大代替。

 代码如下:

namespace matrix
{
	template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>
	class Graph
	{
		typedef Graph<V, W, MAX_W, Direction> Self;
	public:
		Graph() = default;
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_matrix.resize(n);
			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				_matrix[i].resize(n, MAX_W);
			}
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				cout << "不存在顶点" << ":" << v << endl;
				throw invalid_argument("顶点不存在");

				return -1;
			}
		}


		void _AddEdge(size_t srci, size_t dsti, const W& w)
		{
			_matrix[srci][dsti] = w;
			// 无向图
			if (Direction == false)
			{
				_matrix[dsti][srci] = w;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			_AddEdge(srci, dsti, w);
		}

		void Print()
		{
			// 顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			// 矩阵
			// 横下标
			cout << "  ";
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				//cout << i << " ";
				printf("%4d", i);
			}
			cout << endl;

			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				cout << i << " "; // 竖下标
				for (size_t j = 0; j < _matrix[i].size(); ++j)
				{
					//cout << _matrix[i][j] << " ";
					if (_matrix[i][j] == MAX_W)
					{
						//cout << "* ";
						printf("%4c", '*');
					}
					else
					{
						//cout << _matrix[i][j] << " ";
						printf("%4d", _matrix[i][j]);
					}
				}
				cout << endl;
			}
			cout << endl;

			for (size_t i = 0; i < _matrix.size(); ++i)
			{
				for (size_t j = 0; j < _matrix[i].size(); ++j)
				{
					if (i < j && _matrix[i][j] != MAX_W)
					{
						cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j]
<< endl;
					}
				}
			}

		}
	private:
		vector<V> _vertexs;			// 顶点集合
		map<V, int> _indexMap;		// 顶点映射下标
		vector<vector<W>> _matrix;  // 邻接矩阵
	};
}

2.2邻接表

  邻接表:使用数组表示顶点的集合,使用链表表示边的关系。  

 

  注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点 vi 的度,只需要知道顶点
vi边链表集合中结点的数目即可。  

 

注意:有向图中每条边在邻接表中只出现一次,与顶点 vi 对应的邻接表所含结点的个数,就
是该顶点的出度,也称出度表,要得到 vi 顶点的入度,必须检测其他所有顶点对应的边链
表,看有多少边顶点的 dst 取值是 i
代码如下:
namespace link_table
{
	template<class W>
	struct Edge
	{
		//int _srci;
		int _dsti;  // 目标点的下标
		W _w;		// 权值
		Edge<W>* _next;

		Edge(int dsti, const W& w)
			:_dsti(dsti)
			, _w(w)
			, _next(nullptr)
		{}
	};

	template<class V, class W, bool Direction = false>
	class Graph
	{
		typedef Edge<W> Edge;
	public:
		Graph(const V* a, size_t n)
		{
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; ++i)
			{
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
			}

			_tables.resize(n, nullptr);
		}

		size_t GetVertexIndex(const V& v)
		{
			auto it = _indexMap.find(v);
			if (it != _indexMap.end())
			{
				return it->second;
			}
			else
			{
				//assert(false);
				throw invalid_argument("顶点不存在");

				return -1;
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w)
		{
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);

			// 1->2
			Edge* eg = new Edge(dsti, w);
			eg->_next = _tables[srci];
			_tables[srci] = eg;

			// 2->1
			if (Direction == false)
			{
				Edge* eg = new Edge(srci, w);
				eg->_next = _tables[dsti];
				_tables[dsti] = eg;
			}
		}

		void Print()
		{
			// 顶点
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}
			cout << endl;

			for (size_t i = 0; i < _tables.size(); ++i)
			{
				cout << _vertexs[i] << "[" << i << "]->";
				Edge* cur = _tables[i];
				while (cur)
				{
					cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";
					cur = cur->_next;
				}
				cout << "nullptr" << endl;
			}
		}

	private:
		vector<V> _vertexs;			// 顶点集合
		map<V, int> _indexMap;		// 顶点映射下标
		vector<Edge*> _tables;		// 邻接表
	};
}

三、图的遍历

3.1图的广度优先遍历

void BFS(const V& src)
		{
			size_t srci = GetVertexIndex(src);

			// 队列和标记数组
			queue<int> q;
			vector<bool> visited(_vertexs.size(), false);

			q.push(srci);
			visited[srci] = true;
			int levelSize = 1;

			size_t n = _vertexs.size();
			while (!q.empty())
			{
				// 一层一层出
				for (int i = 0; i < levelSize; ++i)
				{
					int front = q.front();
					q.pop();
					cout << front << ":" << _vertexs[front] << " ";
					// 把front顶点的邻接顶点入队列
					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[front][i] != MAX_W)
						{
							if (visited[i] == false)
							{
								q.push(i);
								visited[i] = true;
							}
						}
					}
				}
				cout << endl;

				levelSize = q.size();
			}

			cout << endl;
		}

3.2图的深度优先遍历

void _DFS(size_t srci, vector<bool>& visited)
		{
			cout << srci << ":" << _vertexs[srci] << endl;
			visited[srci] = true;

			// 找一个srci相邻的没有访问过的点,去往深度遍历
			for (size_t i = 0; i < _vertexs.size(); ++i)
			{
				if (_matrix[srci][i] != MAX_W && visited[i] == false)
				{
					_DFS(i, visited);
				}
			}

		}

		void DFS(const V& src)
		{
			size_t srci = GetVertexIndex(src);
			vector<bool> visited(_vertexs.size(), false);

			_DFS(srci, visited);
		}

四、最小生成树

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树
就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
若连通图由n 个顶点组成,则其生成树必含 n 个顶点和 n-1 条边。因此构造最小生成树的准则有三
条:
1. 只能使用图中的边来构造最小生成树 。
2. 只能使用恰好 n-1 条边来连接图中的 n个顶点。
3. 选用的 n-1条边不能构成回路 。
构造最小生成树的方法:Kruskal 算法 Prim 算法 。这两个算法都采用了 逐步求解的贪心策略。
贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是
整体最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优
解。
4.1Kruskal(克鲁斯卡尔算法)
任给一个有 n 个顶点的连通网络 N={V,E} ,首先构造一个由这 n 个顶点组成、不含任何边的图 G={V,NULL} ,其中每个顶点自成一个连通分 量, 其次不断从 E 中取出权值最小的一条边 ( 若有多条任取其一 ) ,若该边的两个顶点来自不同的连通分 量,则将此边加入到 G 。如此重复,直到所有顶点在同一个连通分量上为止。
核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。
来自算法导论:
W Kruskal(Self& minTree)
		{
			size_t n = _vertexs.size();

			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			priority_queue<Edge, vector<Edge>, greater<Edge>> minque;
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (i < j && _matrix[i][j] != MAX_W)
					{
						minque.push(Edge(i, j, _matrix[i][j]));
					}
				}
			}

			// 选出n-1条边
			int size = 0;
			W totalW = W();
			UnionFindSet ufs(n);
			while (!minque.empty())
			{
				Edge min = minque.top();
				minque.pop();

				if (!ufs.InSet(min._srci, min._dsti))
				{
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] <<":"<<min._w << endl;
					minTree._AddEdge(min._srci, min._dsti, min._w);
					ufs.Union(min._srci, min._dsti);
					++size;
					totalW += min._w;
				}
				else
				{
					//cout << "构成环:";
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
			}

			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

4.1Prim(普里姆算法)

来自算法导论:

 

 

W Prim(Self& minTree, const W& src)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			vector<bool> X(n, false);
			vector<bool> Y(n, true);
			X[srci] = true;
			Y[srci] = false;

			// 从X->Y集合中连接的边里面选出最小的边
			priority_queue<Edge, vector<Edge>, greater<Edge>> minq;
			// 先把srci连接的边添加到队列中
			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[srci][i] != MAX_W)
				{
					minq.push(Edge(srci, i, _matrix[srci][i]));
				}
			}

			cout << "Prim开始选边" << endl;
			size_t size = 0;
			W totalW = W();
			while (!minq.empty())
			{
				Edge min = minq.top();
				minq.pop();

				// 最小边的目标点也在X集合,则构成环
				if (X[min._dsti])
				{
					//cout << "构成环:";
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
				else
				{
					minTree._AddEdge(min._srci, min._dsti, min._w);
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
					X[min._dsti] = true;
					Y[min._dsti] = false;
					++size;
					totalW += min._w;
					if (size == n - 1)
						break;

					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[min._dsti][i] != MAX_W && Y[i])
						{
							minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
						}
					}
				}
			}

			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

五、最短路径

最短路径问题:从在带权有向图 G 中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。

5.1Dijkstra(迪杰斯特拉算法)

  单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图
中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短
路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点
和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径。针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时 为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径 的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S 中,对u 的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u 的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新 为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经 查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定 的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所 以该算法使用的是贪心策略。
Dijkstra算法存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路
径的最短路径。  

 

		// 顶点个数是N  -> 时间复杂度:O(N^2)空间复杂度:O(N)
		void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			dist.resize(n, MAX_W);
			pPath.resize(n, -1);

			dist[srci] = 0;
			pPath[srci] = srci;

			// 已经确定最短路径的顶点集合
			vector<bool> S(n, false);

			for (size_t j = 0; j < n; ++j)
			{
				// 选最短路径顶点且不在S更新其他路径
				int u = 0;
				W min = MAX_W;
				for (size_t i = 0; i < n; ++i)
				{
					if (S[i] == false && dist[i] < min)
					{
						u = i;
						min = dist[i];
					}
				}

				S[u] = true;
				// 松弛更新u连接顶点v  srci->u + u->v <  srci->v  更新
				for (size_t v = 0; v < n; ++v)
				{
					if (S[v] == false && _matrix[u][v] != MAX_W
						&& dist[u] + _matrix[u][v] < dist[v])
					{
						dist[v] = dist[u] + _matrix[u][v];
						pPath[v] = u;
					}
				}
			}
		}

5.2Bellman-Ford(贝尔曼-福特算法)

  Dijkstra算法只能用来解决正权图的单源最短路径问题,但有些题目会出现负权图。这时这个算法  
就不能帮助我们解决问题了,而bellman—ford 算法可以解决负权图的单源最短路径问题。它的
优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路。它也有明显
的缺点,它的时间复杂度 O(N*E) (N 是点数, E 是边数 ) 普遍是要高于 Dijkstra 算法 O(N²)的。像这里
如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出
来Bellman-Ford就是一种暴力求解更新。  

 

// 时间复杂度:O(N^3) 空间复杂度:O(N)
		bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			size_t n = _vertexs.size();
			size_t srci = GetVertexIndex(src);

			// vector<W> dist,记录srci-其他顶点最短路径权值数组
			dist.resize(n, MAX_W);

			// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
			pPath.resize(n, -1);

			// 先更新srci->srci为缺省值
			dist[srci] = W();

			//cout << "更新边:i->j" << endl;


			// 总体最多更新n轮
			for (size_t k = 0; k < n; ++k)
			{
				// i->j 更新松弛
				bool update = false;
				cout << "更新第:" << k << "轮" << endl;
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// srci -> i + i ->j
						if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
						{
							update = true;
							cout << _vertexs[i] << "->" << _vertexs[j] << ":" << _matrix[i][j] << endl;
							dist[j] = dist[i] + _matrix[i][j];
							pPath[j] = i;
						}
					}
				}

				// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了
				if (update == false)
				{
					break;
				}
			}


			// 还能更新就是带负权回路
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					// srci -> i + i ->j
					if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
					{
						return false;
					}
				}
			}

			return true;
		}

5.3 多源最短路径--Floyd-Warshall(弗洛伊德算法)

Floyd-Warshall 算法是解决任意两点间的最短路径的一种算法。
Floyd 算法考虑的是一条最短路径的中间节点,即简单路径 p={v1,v2,…,vn} 上除 v1 vn 的任意节
点。
k p 的一个中间节点,那么从 i j 的最短路径 p 就被分成 i k k j 的两段最短路径 p1 p2 p1
是从 i k 且中间节点属于 {1 2 k-1} 取得的一条最短路径。 p2 是从 k j 且中间节点属于 {1
2 k-1} 取得的一条最短路径。

 

 

 

void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
		{
			size_t n = _vertexs.size();
			vvDist.resize(n);
			vvpPath.resize(n);

			// 初始化权值和路径矩阵
			for (size_t i = 0; i < n; ++i)
			{
				vvDist[i].resize(n, MAX_W);
				vvpPath[i].resize(n, -1);
			}

			// 直接相连的边更新一下
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W)
					{
						vvDist[i][j] = _matrix[i][j];
						vvpPath[i][j] = i;
					}

					if (i == j)
					{
						vvDist[i][j] = W();
					}
				}
			}

			// abcdef  a {} f ||  b {} c
			// 最短路径的更新i-> {其他顶点} ->j
			for (size_t k = 0; k < n; ++k)
			{
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// k 作为的中间点尝试去更新i->j的路径
						if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W
							&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
						{
							vvDist[i][j] = vvDist[i][k] + vvDist[k][j];

							// 找跟j相连的上一个邻接顶点
							// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k
							// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是x

							vvpPath[i][j] = vvpPath[k][j];
						}
					}
				}

				// 打印权值和路径矩阵观察数据
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (vvDist[i][j] == MAX_W)
						{
							//cout << "*" << " ";
							printf("%3c", '*');
						}
						else
						{
							//cout << vvDist[i][j] << " ";
							printf("%3d", vvDist[i][j]);
						}
					}
					cout << endl;
				}
				cout << endl;

				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						//cout << vvParentPath[i][j] << " ";
						printf("%3d", vvpPath[i][j]);
					}
					cout << endl;
				}
				cout << "=================================" << endl;
			}
		}

补充:关于打印最短路径的代码:

void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			for (size_t i = 0; i < n; ++i)
			{
				if (i != srci)
				{
					// 找出i顶点的路径
					vector<int> path;
					size_t parenti = i;
					while (parenti != srci)
					{
						path.push_back(parenti);
						parenti = pPath[parenti];
					}
					path.push_back(srci);
					reverse(path.begin(), path.end());

					for (auto index : path)
					{
						cout << _vertexs[index] << "->";
					}
					cout << "权值和:" << dist[i] << endl;
				}
			}
		}


http://lihuaxi.xjx100.cn/news/439652.html

相关文章

携程Apollo配置中心架构介绍

俗话说”麻雀虽小&#xff0c;五脏俱全“&#xff0c;有人说想看开源源码却不知道什么好&#xff0c;事实上&#xff0c;那些流行多年&#xff0c;广受好评的开源工程都是很值得一读的。今天我们介绍Apollo配置中心的基本情况&#xff0c;之所以介绍这个&#xff0c;主要是因为…

计算机操作系统笔记总结:Part2 进程与线程

文章目录1 进程1.1 进程的概念、组成与特征1.2 进程的状态与转换1.3 进程的组织1.4 进程控制1.5 进程通信2 线程与多线程模型2.1 线程的概念2.2 线程的实现方式2.3 多线程模型2.4 线程的状态与转换3 处理机调度3.1 调度的三个层次3.2 进程的挂起态与七状态模型3.3 进程调度3.3.…

Transformers学习笔记1. 一些基本概念和编码器、字典

Transformers学习笔记1. 一些基本概念和编码器、字典一、基本概念1. Hugging Face简介2. Transformers&#xff08;1&#xff09;简介&#xff08;1&#xff09;预定义模型&#xff08;2&#xff09;使用方法3. Datasets查看有哪些公开数据集方法1&#xff1a; 使用datasets包的…

【华为OD机试真题2023 JAVA】整理扑克牌

华为OD机试真题,2023年度机试题库全覆盖,刷题指南点这里 整理扑克牌 知识点贪心排序 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 给定一组数字,表示扑克牌的牌面数字,忽略扑克牌的花色,请按如下规则对这一组扑克牌进行整理: 步骤1、对扑克牌进行分组,形成…

[附源码]Nodejs计算机毕业设计健身房预约平台Express(程序+LW)

该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程。欢迎交流 项目运行 环境配置&#xff1a; Node.js Vscode Mysql5.7 HBuilderXNavicat11VueExpress。 项目技术&#xff1a; Express框架 Node.js Vue 等等组成&#xff0c;B/S模式 Vscode管理前后端分…

使用c++部署tensorrt加速yolov7

先放上一张我运行成功的截图,只要跟着我的教程一步一步按操作,下载好匹配的软件是一定可以成功的! 我相信想要在C++平台使用tensorrt加速的朋友们也是有很强的计算机基础的,那么简单的部分我们就跳过,重点是和大家介绍模型转换的部分以及环境的搭建。 一. 环境 我的cudn…

实习生招聘丨DolphinDB星臾计划

什么是星臾计划&#xff1f; 星臾计划是DolphinDB针对在读本科/硕士/博士生常年开放的实习生培养计划&#xff0c;帮助在校生提前了解企业、熟悉工作环境、提前锁定正式offer。 考核A,可提前拿到次年正式offer实习满6个月&#xff0c;可免试用期优秀实习生奖励2000元获得公司…

信息采编功能扩展开发心得

AEAI Portal门户为前端页面集成层而设计&#xff0c;在使用上简单、便捷&#xff0c;即使是非技术人员&#xff0c;通过操作文档也能够很好地将网站配置出来&#xff0c;不需要自身有很强的代码能力。同时门户平台搭配数通畅联的其他产品和组合方案&#xff0c;能够帮助企业快速…