过关斩将打进Kaggle竞赛Top 0.3%,我是这样做的

news/2024/7/3 1:01:02

640?wx_fmt=jpeg


作者 | Lavanya Shukla

译者 | Monanfei

责编 | 夕颜

出品 | AI科技大本营(id:rgznai100)

导读:刚开始接触数据竞赛时,我们可能会被一些高大上的技术吓到。各界大佬云集,各种技术令人眼花缭乱,新手们就像蜉蝣一般渺小无助。今天本文就分享一下在 kaggle 的竞赛中,参赛者取得 top0.3% 的经验和技巧。让我们开始吧!


Top 0.3% 模型概览



赛题和目标


  • 数据集中的每一行都描述了某一匹马的特征

  • 在已知这些特征的条件下,预测每匹马的销售价格

  • 预测价格对数和真实价格对数的RMSE(均方根误差)作为模型的评估指标。将RMSE转化为对数尺度,能够保证廉价马匹和高价马匹的预测误差,对模型分数的影响较为一致。


模型训练过程中的重要细节


  • 交叉验证:使用12-折交叉验证

  • 模型:在每次交叉验证中,同时训练七个模型(ridge, svr, gradient boosting, random forest, xgboost, lightgbm regressors)

  • Stacking 方法:使用 xgboot 训练了元 StackingCVRegressor 学习器

  • 模型融合:所有训练的模型都会在不同程度上过拟合,因此,为了做出最终的预测,将这些模型进行了融合,得到了鲁棒性更强的预测结果


模型性能


从下图可以看出,融合后的模型性能最好,RMSE 仅为 0.075,该融合模型用于最终预测。

 

In[1]:


from IPython.display import Image	
Image("../input/kernel-files/model_training_advanced_regression.png")

 

Output[1]:

       640?wx_fmt=png       

现在让我们正式开始吧!

 

In[2]:

# Essentials	
import numpy as np	
import pandas as pd	
import datetime	
import random
# Plots	
import seaborn as sns	
import matplotlib.pyplot as plt	# Models	
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, BaggingRegressor	
from sklearn.kernel_ridge import KernelRidge	
from sklearn.linear_model import Ridge, RidgeCV	
from sklearn.linear_model import ElasticNet, ElasticNetCV	
from sklearn.svm import SVR	
from mlxtend.regressor import StackingCVRegressor	
import lightgbm as lgb	
from lightgbm import LGBMRegressor	
from xgboost import XGBRegressor	# Stats	
from scipy.stats import skew, norm	
from scipy.special import boxcox1p	
from scipy.stats import boxcox_normmax	# Misc	
from sklearn.model_selection import GridSearchCV	
from sklearn.model_selection import KFold, cross_val_score	
from sklearn.metrics import mean_squared_error	
from sklearn.preprocessing import OneHotEncoder	
from sklearn.preprocessing import LabelEncoder	
from sklearn.pipeline import make_pipeline	
from sklearn.preprocessing import scale	
from sklearn.preprocessing import StandardScaler	
from sklearn.preprocessing import RobustScaler	
from sklearn.decomposition import PCA	pd.set_option('display.max_columns', None)	# Ignore useless warnings	
import warnings	
warnings.filterwarnings(action="ignore")	
pd.options.display.max_seq_items = 8000	
pd.options.display.max_rows = 8000	import os	
print(os.listdir("../input/kernel-fi

 

Output[2]:

['model_training_advanced_regression.png']


In[3]:

# Read in the dataset as a dataframe	
train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')	
test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')	
train.shape, test.shape


Output[3]:

((1460, 81), (1459, 80))


EDA


目标


  • 数据集中的每一行都描述了某一匹马的特征

  • 在已知这些特征的条件下,预测每匹马的销售价格


对原始数据进行可视化


In[4]:

# Preview the data we're working with	
train.head()


Output[5]:

       640?wx_fmt=png      

SalePrice:目标值的特性探究


In[5]:

sns.set_style("white")	
sns.set_color_codes(palette='deep')	
f, ax = plt.subplots(figsize=(8, 7))	
#Check the new distribution	
sns.distplot(train['SalePrice'], color="b");	
ax.xaxis.grid(False)	
ax.set(ylabel="Frequency")	
ax.set(xlabel="SalePrice")	
ax.set(title="SalePrice distribution")	
sns.despine(trim=True, left=True)	
plt.show()

      640?wx_fmt=png
     

In[6]:

# Skew and kurt	
print("Skewness: %f" % train['SalePrice'].skew())	
print("Kurtosis: %f" % train['SalePrice'].kurt())


Skewness: 1.882876

Kurtosis: 6.536282


可用的特征:深入探索

数据可视化

 

In[7]:

# Finding numeric features	
numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']	
numeric = []	
for i in train.columns:	if train[i].dtype in numeric_dtypes:	if i in ['TotalSF', 'Total_Bathrooms','Total_porch_sf','haspool','hasgarage','hasbsmt','hasfireplace']:	pass	else:	numeric.append(i)	
# visualising some more outliers in the data values	
fig, axs = plt.subplots(ncols=2, nrows=0, figsize=(12, 120))	
plt.subplots_adjust(right=2)	
plt.subplots_adjust(top=2)	
sns.color_palette("husl", 8)	
for i, feature in enumerate(list(train[numeric]), 1):	if(feature=='MiscVal'):	break	plt.subplot(len(list(numeric)), 3, i)	sns.scatterplot(x=feature, y='SalePrice', hue='SalePrice', palette='Blues', data=train)	plt.xlabel('{}'.format(feature), size=15,labelpad=12.5)	plt.ylabel('SalePrice', size=15, labelpad=12.5)	for j in range(2):	plt.tick_params(axis='x', labelsize=12)	plt.tick_params(axis='y', labelsize=12)	plt.legend(loc='best', prop={'size': 10})	plt.show()


   

640?wx_fmt=png

      

 

探索这些特征以及 SalePrice 的相关性

 

In[8]:

corr = train.corr()	
plt.subplots(figsize=(15,12))	
sns.heatmap(corr, vmax=0.9, cmap="Blues", square=True)


Output[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff0e416e4e0>

       

     

 

选取部分特征,可视化它们和 SalePrice 的相关性

 

Input[9]:

data = pd.concat([train['SalePrice'], train['OverallQual']], axis=1)	
f, ax = plt.subplots(figsize=(8, 6))	
fig = sns.boxplot(x=train['OverallQual'], y="SalePrice", data=data)	
fig.axis(ymin=0, ymax=800000);


       640?wx_fmt=png      

Input[10]:

data = pd.concat([train['SalePrice'], train['YearBuilt']], axis=1)	
f, ax = plt.subplots(figsize=(16, 8))	
fig = sns.boxplot(x=train['YearBuilt'], y="SalePrice", data=data)	
fig.axis(ymin=0, ymax=800000);	
plt.xticks(rotation=45);


       640?wx_fmt=png      

Input[11]:

data = pd.concat([train['SalePrice'], train['TotalBsmtSF']], axis=1)	
data.plot.scatter(x='TotalBsmtSF', y='SalePrice', alpha=0

.3, ylim=(0,800000));

       640?wx_fmt=png      

Input[12]:

data = pd.concat([train['SalePrice'], train['LotArea']], axis=1)	
data.plot.scatter(x='LotArea', y='SalePrice', alpha=0.3, y

lim=(0,800000));

       640?wx_fmt=png      

Input[13]:

data = pd.concat([train['SalePrice'], train['GrLivArea']], axis=1)	
data.plot.scatter(x='GrLivArea', y='SalePrice', alpha=0.3,

ylim=(0,800000));

       640?wx_fmt=png      

Input[14]:

# Remove the Ids from train and test, as they are unique for each row and hence not useful for the model	
train_ID = train['Id']	
test_ID = test['Id']	
train.drop(['Id'], axis=1, inplace=True)	
test.drop(['Id'], axis=1, inplace=True)	
train.shape, test.shape


Output[14]:


((1460, 80), (1459, 79))


可视化 salePrice 的分布


Input[15]:

sns.set_style("white")	
sns.set_color_codes(palette='deep')	
f, ax = plt.subplots(figsize=(8, 7))	
#Check the new distribution	
sns.distplot(train['SalePrice'], color="b");	
ax.xaxis.grid(False)	
ax.set(ylabel="Frequency")	
ax.set(xlabel="SalePrice")	
ax.set(title="SalePrice distribution")	
sns.despine(trim=True, left=True)	
plt.show()


       640?wx_fmt=png      

从上图中可以看出,SalePrice 有点向右边倾斜,由于大多数机器学习模型对非正态分布的数据的效果不佳,因此,我们对数据进行变换,修正这种倾斜:log(1+x) 

 

Input[16]:

# log(1+x) transform	
train["SalePrice"] = np.log1p(train["SalePrice"])


对 SalePrice 重新进行可视化

 

Input[17]:

sns.set_style("white")	
sns.set_color_codes(palette='deep')	
f, ax = plt.subplots(figsize=(8, 7))	
#Check the new distribution	
sns.distplot(train['SalePrice'] , fit=norm, color="b");	# Get the fitted parameters used by the function	
(mu, sigma) = norm.fit(train['SalePrice'])	
print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))	#Now plot the distribution	
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)],	loc='best')	
ax.xaxis.grid(False)	
ax.set(ylabel="Frequency")	
ax.set(xlabel="SalePrice")	
ax.set(title="SalePrice distribution")	
sns.despine(trim=True, left=True)	plt.show

mu = 12.02 and sigma = 0.40

 

       640?wx_fmt=png      

 

从图中可以看到,当前的 SalePrice 已经变成了正态分布

Input[18]:

# Remove outliers	
train.drop(train[(train['OverallQual']<5) & (train['SalePrice']>200000)].index, inplace=True)	
train.drop(train[(train['GrLivArea']>4500) & (train['SalePrice']<300000)].index, inplace=True)	
train.reset_index(drop=True, inplace=True)


Input[19]:

# Split features and labels	
train_labels = train['SalePrice'].reset_index(drop=True)	
train_features = train.drop(['SalePrice'], axis=1)	
test_features = test	
# Combine train and test features in order to apply the feature transformation pipeline to the entire dataset	
all_features = pd.concat([train_features, test_features]).reset_index(drop=True)	
all_features.shape

 

Input[19]:

(2917, 79)

填充缺失值


Input[20]:

# determine the threshold for missing values	
def percent_missing(df):	data = pd.DataFrame(df)	df_cols = list(pd.DataFrame(data))	dict_x = {}	for i in range(0, len(df_cols)):	dict_x.update({df_cols[i]: round(data[df_cols[i]].isnull().mean()*100,2)})	return dict_x	missing = percent_missing(all_features)	
df_miss = sorted(missing.items(), key=lambda x: x[1], reverse=True)	
print('Percent of missing data')	
df_miss[0:10]

Percent of missing data

Output[20]:

[('PoolQC', 99.69),

('MiscFeature', 96.4),

('Alley', 93.21),

('Fence', 80.43),

('FireplaceQu', 48.68),

('LotFrontage', 16.66),

('GarageYrBlt', 5.45),

('GarageFinish', 5.45),

('GarageQual', 5.45),

('GarageCond', 5.45)]

 

Input[21]:

# Visualize missing values	
sns.set_style("white")	
f, ax = plt.subplots(figsize=(8, 7))	
sns.set_color_codes(palette='deep')	
missing = round(train.isnull().mean()*100,2)	
missing = missing[missing > 0]	
missing.sort_values(inplace=True)	
missing.plot.bar(color="b")	
# Tweak the visual presentation	
ax.xaxis.grid(False)	
ax.set(ylabel="Percent of missing values")	
ax.set(xlabel="Features")	
ax.set(title="Percent missing data by feature")	
sns.despine(trim=True, left=True)


       640?wx_fmt=png      

 

接下来,我们将分别对每一列填充缺失值


Input[22]:

# Some of the non-numeric predictors are stored as numbers; convert them into strings	
all_features['MSSubClass'] = all_features['MSSubClass'].apply(str)	
all_features['YrSold'] = all_features['YrSold'].astype(str)	
all_features['MoSold'] = all_features['MoSold'].astype(str)


Input[23]:

def handle_missing(features):	# the data description states that NA refers to typical ('Typ') values	features['Functional'] = features['Functional'].fillna('Typ')	# Replace the missing values in each of the columns below with their mode	features['Electrical'] = features['Electrical'].fillna("SBrkr")	features['KitchenQual'] = features['KitchenQual'].fillna("TA")	features['Exterior1st'] = features['Exterior1st'].fillna(features['Exterior1st'].mode()[0])	features['Exterior2nd'] = features['Exterior2nd'].fillna(features['Exterior2nd'].mode()[0])	features['SaleType'] = features['SaleType'].fillna(features['SaleType'].mode()[0])	features['MSZoning'] = features.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode()[0]))	# the data description stats that NA refers to "No Pool"	features["PoolQC"] = features["PoolQC"].fillna("None")	# Replacing the missing values with 0, since no garage = no cars in garage	for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):	features[col] = features[col].fillna(0)	# Replacing the missing values with None	for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']:	features[col] = features[col].fillna('None')	# NaN values for these categorical basement features, means there's no basement	for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):	features[col] = features[col].fillna('None')	# Group the by neighborhoods, and fill in missing value by the median LotFrontage of the neighborhood	features['LotFrontage'] = features.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median()))	# We have no particular intuition around how to fill in the rest of the categorical features	# So we replace their missing values with None	objects = []	for i in features.columns:	if features[i].dtype == object:	objects.append(i)	features.update(features[objects].fillna('None'))	# And we do the same thing for numerical features, but this time with 0s	numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']	numeric = []	for i in features.columns:	if features[i].dtype in numeric_dtypes:	numeric.append(i)	features.update(features[numeric].fillna(0))	return features	all_features = handle_missing(all_features


Input[24]:

# Let's make sure we handled all the missing values	
missing = percent_missing(all_features)	
df_miss = sorted(missing.items(), key=lambda x: x[1], reverse=True)	
print('Percent of missing data')	
df_miss[0:10]


Output[14]:

Percent of missing data

 [('MSSubClass', 0.0),

('MSZoning', 0.0),

('LotFrontage', 0.0),

('LotArea', 0.0),

('Street', 0.0),

('Alley', 0.0),

('LotShape', 0.0),

('LandContour', 0.0),

('Utilities', 0.0),

('LotConfig', 0.0)]


从上面的结果可以看到,所有缺失值已经填充完毕

 

调整分布倾斜的特征


Input[25]:

# Fetch all numeric features	
numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']	
numeric = []	
for i in all_features.columns:	if all_features[i].dtype in numeric_dtypes:	numeric.append(i)


Input[26]:

# Create box plots for all numeric features	
sns.set_style("white")	
f, ax = plt.subplots(figsize=(8, 7))	
ax.set_xscale("log")	
ax = sns.boxplot(data=all_features[numeric] , orient="h", palette="Set1")	
ax.xaxis.grid(False)	
ax.set(ylabel="Feature names")	
ax.set(xlabel="Numeric values")	
ax.set(title="Numeric Distribution of Features")	
sns.despine(trim=True, left=True)

       640?wx_fmt=png      

Input[27]:


# Find skewed numerical features	
skew_features = all_features[numeric].apply(lambda x: skew(x)).sort_values(ascending=False)	high_skew = skew_features[skew_features > 0.5]	
skew_index = high_skew.index	print("There are {} numerical features with Skew > 0.5 :".format(high_skew.shape[0]))	
skewness = pd.DataFrame({'Skew' :high_skew})	
skew_features.head(10


Output[27]:

There are 25 numerical features with Skew > 0.5 :

MiscVal          21.939672

PoolArea         17.688664

LotArea          13.109495

LowQualFinSF     12.084539

3SsnPorch        11.372080

KitchenAbvGr      4.300550

BsmtFinSF2        4.144503

EnclosedPorch     4.002344

ScreenPorch       3.945101

BsmtHalfBath      3.929996

dtype: float64

 

使用 scipy 的函数 boxcox1来进行 Box-Cox 转换,将数据正态化

Input[28]:	
# Normalize skewed features	
for i in skew_index:	all_features[i] = boxcox1p(all_features[i], 	boxcox_normmax(all_features[i] + 1))


Input[29]:

# Let's make sure we handled all the skewed values	
sns.set_style("white")	
f, ax = plt.subplots(figsize=(8, 7))	
ax.set_xscale("log")	
ax = sns.boxplot(data=all_features[skew_index] , orient="h", palette="Set1")	
ax.xaxis.grid(False)	
ax.set(ylabel="Feature names")	
ax.set(xlabel="Numeric values")	
ax.set(title="Numeric Distribution of Features")	
sns.despine(trim=True, left=True)

       640?wx_fmt=png       

从上图可以看到,所有特征都看上去呈正态分布了。

 

创建一些有用的特征


机器学习模型对复杂模型的认知较差,因此我们需要用我们的直觉来构建有效的特征,从而帮助模型更加有效的学习。

 

all_features['BsmtFinType1_Unf'] = 1*(all_features['BsmtFinType1'] == 'Unf')	
all_features['HasWoodDeck'] = (all_features['WoodDeckSF'] == 0) * 1	
all_features['HasOpenPorch'] = (all_features['OpenPorchSF'] == 0) * 1	
all_features['HasEnclosedPorch'] = (all_features['EnclosedPorch'] == 0) * 1	
all_features['Has3SsnPorch'] = (all_features['3SsnPorch'] == 0) * 1	
all_features['HasScreenPorch'] = (all_features['ScreenPorch'] == 0) * 1	
all_features['YearsSinceRemodel'] = all_features['YrSold'].astype(int) - all_features['YearRemodAdd'].astype(int)	
all_features['Total_Home_Quality'] = all_features['OverallQual'] + all_features['OverallCond']	
all_features = all_features.drop(['Utilities', 'Street', 'PoolQC',], axis=1)	
all_features['TotalSF'] = all_features['TotalBsmtSF'] + all_features['1stFlrSF'] + all_features['2ndFlrSF']	
all_features['YrBltAndRemod'] = all_features['YearBuilt'] + all_features['YearRemodAdd']	all_features['Total_sqr_footage'] = (all_features['BsmtFinSF1'] + all_features['BsmtFinSF2'] +	all_features['1stFlrSF'] + all_features['2ndFlrSF'])	
all_features['Total_Bathrooms'] = (all_features['FullBath'] + (0.5 * all_features['HalfBath']) +	all_features['BsmtFullBath'] + (0.5 * all_features['BsmtHalfBath']))	
all_features['Total_porch_sf'] = (all_features['OpenPorchSF'] + all_features['3SsnPorch'] +	all_features['EnclosedPorch'] + all_features['ScreenPorch'] +	all_features['WoodDeckSF'])	
all_features['TotalBsmtSF'] = all_features['TotalBsmtSF'].apply(lambda x: np.exp(6) if x <= 0.0 else x)	
all_features['2ndFlrSF'] = all_features['2ndFlrSF'].apply(lambda x: np.exp(6.5) if x <= 0.0 else x)	
all_features['GarageArea'] = all_features['GarageArea'].apply(lambda x: np.exp(6) if x <= 0.0 else x)	
all_features['GarageCars'] = all_features['GarageCars'].apply(lambda x: 0 if x <= 0.0 else x)	
all_features['LotFrontage'] = all_features['LotFrontage'].apply(lambda x: np.exp(4.2) if x <= 0.0 else x)	
all_features['MasVnrArea'] = all_features['MasVnrArea'].apply(lambda x: np.exp(4) if x <= 0.0 else x)	
all_features['BsmtFinSF1'] = all_features['BsmtFinSF1'].apply(lambda x: np.exp(6.5) if x <= 0.0 else x)	all_features['haspool'] = all_features['PoolArea'].apply(lambda x: 1 if x > 0 else 0)	
all_features['has2ndfloor'] = all_features['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)	
all_features['hasgarage'] = all_features['GarageArea'].apply(lambda x: 1 if x > 0 else 0)	
all_features['hasbsmt'] = all_features['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)	
all_features['hasfireplace'] = all_features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0


特征转换


通过对特征取对数或者平方,可以创造更多的特征,这些操作有利于发掘潜在的有用特征。

 

def logs(res, ls):	m = res.shape[1]	for l in ls:	res = res.assign(newcol=pd.Series(np.log(1.01+res[l])).values)	res.columns.values[m] = l + '_log'	m += 1	return res	log_features = ['LotFrontage','LotArea','MasVnrArea','BsmtFinSF1','BsmtFinSF2','BsmtUnfSF',	'TotalBsmtSF','1stFlrSF','2ndFlrSF','LowQualFinSF','GrLivArea',	'BsmtFullBath','BsmtHalfBath','FullBath','HalfBath','BedroomAbvGr','KitchenAbvGr',	'TotRmsAbvGrd','Fireplaces','GarageCars','GarageArea','WoodDeckSF','OpenPorchSF',	'EnclosedPorch','3SsnPorch','ScreenPorch','PoolArea','MiscVal','YearRemodAdd','TotalSF']	all_features = logs(all_features, log_features


def squares(res, ls):	m = res.shape[1]	for l in ls:	res = res.assign(newcol=pd.Series(res[l]*res[l]).values)	res.columns.values[m] = l + '_sq'	m += 1	return res	squared_features = ['YearRemodAdd', 'LotFrontage_log',	'TotalBsmtSF_log', '1stFlrSF_log', '2ndFlrSF_log', 'GrLivArea_log',	'GarageCars_log', 'GarageArea_log']	
all_features = squares(all_features, squared_features)


对集合特征进行编码


对集合特征进行数值编码,使得机器学习模型能够处理这些特征。

 

all_features = pd.get_dummies(all_features).reset_index(drop=True)	
all_features.shape

(2917, 379)

all_features.head()
 

       640?wx_fmt=png  

all_features.shape

(2917, 379)


# Remove any duplicated column names	
all_features = all_features.loc[:,~all_features.columns. duplicated()]


重新创建训练集和测试集


X = all_features.iloc[:len(train_labels), :]	
X_test = all_features.iloc[len(train_labels):, :]	
X.shape, train_labels.shape, X_test.shape

((1458, 378), (1458,), (1459, 378))

 

对训练集中的部分特征进行可视化

 

# Finding numeric features	
numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']	
numeric = []	
for i in X.columns:	if X[i].dtype in numeric_dtypes:	if i in ['TotalSF', 'Total_Bathrooms','Total_porch_sf','haspool','hasgarage','hasbsmt','hasfireplace']:	pass	else:	numeric.append(i)	
# visualising some more outliers in the data values	
fig, axs = plt.subplots(ncols=2, nrows=0, figsize=(12, 150))	
plt.subplots_adjust(right=2)	
plt.subplots_adjust(top=2)	
sns.color_palette("husl", 8)	
for i, feature in enumerate(list(X[numeric]), 1):	if(feature=='MiscVal'):	break	plt.subplot(len(list(numeric)), 3, i)	sns.scatterplot(x=feature, y='SalePrice', hue='SalePrice', palette='Blues', data=train)	plt.xlabel('{}'.format(feature), size=15,labelpad=12.5)	plt.ylabel('SalePrice', size=15, labelpad=12.5)	for j in range(2):	plt.tick_params(axis='x', labelsize=12)	plt.tick_params(axis='y', labelsize=12)	plt.legend(loc='best', prop={'size': 10})	plt.show()

      640?wx_fmt=png      

模型训练


模型训练过程中的重要细节


  • 交叉验证:使用12-折交叉验证

  • 模型:在每次交叉验证中,同时训练七个模型(ridge, svr, gradient boosting, random forest, xgboost, lightgbm regressors)

  • Stacking 方法:使用xgboot训练了元 StackingCVRegressor 学习器

  • 模型融合:所有训练的模型都会在不同程度上过拟合,因此,为了做出最终的预测,将这些模型进行了融合,得到了鲁棒性更强的预测结果


初始化交叉验证,定义误差评估指标

# Setup cross validation folds	
kf = KFold(n_splits=12, random_state=42, shuffle=True)
# Define error metrics	
def rmsle(y, y_pred):	return np.sqrt(mean_squared_error(y, y_pred))	def cv_rmse(model, X=X):	rmse = np.sqrt(-cross_val_score(model, X, train_labels, scoring="neg_mean_squared_error", cv=kf))	return (rmse)


建立模型


# Light Gradient Boosting Regressor	
lightgbm = LGBMRegressor(objective='regression',	num_leaves=6,	learning_rate=0.01,	n_estimators=7000,	max_bin=200,	bagging_fraction=0.8,	bagging_freq=4,	bagging_seed=8,	feature_fraction=0.2,	feature_fraction_seed=8,	min_sum_hessian_in_leaf = 11,	verbose=-1,	random_state=42)	# XGBoost Regressor	
xgboost = XGBRegressor(learning_rate=0.01,	n_estimators=6000,	max_depth=4,	min_child_weight=0,	gamma=0.6,	subsample=0.7,	colsample_bytree=0.7,	objective='reg:linear',	nthread=-1,	scale_pos_weight=1,	seed=27,	reg_alpha=0.00006,	random_state=42)	# Ridge Regressor	
ridge_alphas = [1e-15, 1e-10, 1e-8, 9e-4, 7e-4, 5e-4, 3e-4, 1e-4, 1e-3, 5e-2, 1e-2, 0.1, 0.3, 1, 3, 5, 10, 15, 18, 20, 30, 50, 75, 100]	
ridge = make_pipeline(RobustScaler(), RidgeCV(alphas=ridge_alphas, cv=kf))	# Support Vector Regressor	
svr = make_pipeline(RobustScaler(), SVR(C= 20, epsilon= 0.008, gamma=0.0003))	# Gradient Boosting Regressor	
gbr = GradientBoostingRegressor(n_estimators=6000,	learning_rate=0.01,	max_depth=4,	max_features='sqrt',	min_samples_leaf=15,	min_samples_split=10,	loss='huber',	random_state=42)	# Random Forest Regressor	
rf = RandomForestRegressor(n_estimators=1200,	max_depth=15,	min_samples_split=5,	min_samples_leaf=5,	max_features=None,	oob_score=True,	random_state=42)	# Stack up all the models above, optimized using xgboost	
stack_gen = StackingCVRegressor(regressors=(xgboost, lightgbm, svr, ridge, gbr, rf),	meta_regressor=xgboost,	use_features_in_secondary=True)


训练模型


计算每个模型的交叉验证的得分

 

scores = {}	score = cv_rmse(lightgbm)	
print("lightgbm: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['lgb'] = (score.mean(), score.std())

lightgbm: 0.1159 (0.0167)

score = cv_rmse(xgboost)	
print("xgboost: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['xgb'] = (score.mean(), score.std())

xgboost: 0.1364 (0.0175)

score = cv_rmse(svr)	
print("SVR: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['svr'] = (score.mean(), score.std())

SVR: 0.1094 (0.0200)

score = cv_rmse(ridge)	
print("ridge: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['ridge'] = (score.mean(), score.std())

ridge: 0.1101 (0.0161)

score = cv_rmse(rf)	
print("rf: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['rf'] = (score.mean(), score.std())

rf: 0.1366 (0.0188

score = cv_rmse(gbr)	
print("gbr: {:.4f} ({:.4f})".format(score.mean(), score.std()))	
scores['gbr'] = (score.mean(), score.std())
gbr: 0.1121 (0.0164)

 

拟合模型

print('stack_gen')	
stack_gen_model = stack_gen.fit(np.array(X), np.array(train_labels))
stack_gen
print('lightgbm')	
lgb_model_full_data = lightgbm.fit(X, train_labels)

lightgbm

print('xgboost')	
xgb_model_full_data = xgboost.fit(X, train_labels)

xgboost

print('Svr')	
svr_model_full_data = svr.fit(X, train_labels)

Svr

print('Ridge')	
ridge_model_full_data = ridge.fit(X, train_labels)

Ridge

print('RandomForest')	
rf_model_full_data = rf.fit(X, train_labels)

RandomForest

print('GradientBoosting')	
gbr_model_full_data = gbr.fit(X, train_labels)

GradientBoosting


融合各个模型,并进行最终预测


# Blend models in order to make the final predictions more robust to overfitting	
def blended_predictions(X):	return ((0.1 * ridge_model_full_data.predict(X)) + \	(0.2 * svr_model_full_data.predict(X)) + \	(0.1 * gbr_model_full_data.predict(X)) + \	(0.1 * xgb_model_full_data.predict(X)) + \	(0.1 * lgb_model_full_data.predict(X)) + \	(0.05 * rf_model_full_data.predict(X)) + \	(0.35 * stack_gen_model.predict(np.array(X))))

 

# Get final precitions from the blended model	
blended_score = rmsle(train_labels, blended_predictions(X))	
scores['blended'] = (blended_score, 0)	
print('RMSLE score on train data:')	
print(blended_score)

RMSLE score on train data:

0.07537440195302639

各模型性能比较


# Plot the predictions for each model	
sns.set_style("white")	
fig = plt.figure(figsize=(24, 12))	ax = sns.pointplot(x=list(scores.keys()), y=[score for score, _ in scores.values()], markers=['o'], linestyles=['-'])	
for i, score in enumerate(scores.values()):	ax.text(i, score[0] + 0.002, '{:.6f}'.format(score[0]), horizontalalignment='left', size='large', color='black', weight='semibold')	plt.ylabel('Score (RMSE)', size=20, labelpad=12.5)	
plt.xlabel('Model', size=20, labelpad=12.5)	
plt.tick_params(axis='x', labelsize=13.5)	
plt.tick_params(axis='y', labelsize=12.5)	plt.title('Scores of Models', size=20)	plt.sho


       640?wx_fmt=png      

 

从上图可以看出,融合后的模型性能最好,RMSE 仅为 0.075,该融合模型用于最终预测。


提交预测结果


# Read in sample_submission dataframe	
submission = pd.read_csv("../input/house-prices-advanced-regression-techniques/sample_submission.csv")	
submission.shape


(1459, 2)


# Append predictions from blended models	
submission.iloc[:,1] = np.floor(np.expm1(blended_predictions(X_test)))	# Fix outleir predictions	
q1 = submission['SalePrice'].quantile(0.0045)	
q2 = submission['SalePrice'].quantile(0.99)	
submission['SalePrice'] = submission['SalePrice'].apply(lambda x: x if x > q1 else x*0.77)	
submission['SalePrice'] = submission['SalePrice'].apply(lambda x: x if x < q2 else x*1.1)	
submission.to_csv("submission_regression1.csv", index=False)

# Scale predictions	
submission['SalePrice'] *= 1.001619	
submission.to_csv("submission_regression2.csv", index=False)


原文链接:

https://www.kaggle.com/lavanyashukla01/how-i-made-top-0-3-on-a-kaggle-competition


(*本文为 AI科技大本营翻译文章,转载请联系 1092722531


精彩推荐



“只讲技术,拒绝空谈”2019 AI开发者大会将于9月6日-7日在北京举行,这一届AI开发者大会有哪些亮点?一线公司的大牛们都在关注什么?AI行业的风向是什么?2019 AI开发者大会,倾听大牛分享,聚焦技术实践,和万千开发者共成长。


目前,大会盲订票限量发售中~扫码购票,领先一步!


640?wx_fmt=jpeg


推荐阅读

  • 干货 | 20个教程,掌握时间序列的特征分析(附代码)

  • 从发展滞后到不断突破,NLP已成为AI又一燃爆点?

  • 长点心吧年轻人,利率不是这么算的!我用Python告诉你亏了多少!

  • 一文看懂数据清洗:缺失值、异常值和重复值的处理

  • Libra 骗局来了! 受害者会是你吗?

  • 那个裸辞的程序员,后来怎么样了?

  • FreeWheel是一家怎样的公司?| 人物志

  • Mac 被曝存在恶意漏洞:黑客可随意调动摄像头,波及四百万用户!

  • 文末送书啦!| Device Mapper,那些你不知道的Docker核心技术


640?wx_fmt=png你点的每个“在看”,我都认真当成了喜欢

http://lihuaxi.xjx100.cn/news/281786.html

相关文章

让学习linux变成一种习惯

无论学习什么技术&#xff0c;都是从小白开始&#xff0c;没有大佬是天生会Linux的&#xff0c;你羡慕的那些大佬&#xff0c;都是通过不断的刻苦学习从而蜕变成大佬的。由于需要解决生存问题&#xff0c;加上我也对Linux比较有兴趣&#xff0c;所以就打算从事故事Linux运维的工…

雅虎优化14条

法则1. 减少HTTP请求次数 80%的最终用户响应时间花在前端程序上&#xff0c;而其大部分时间则花在各种页面元素&#xff0c;如图像、样式表、脚本和Flash等&#xff0c;的下载上。减少页面元素将会减少HTTP请求次数。这是快速显示页面的关键所在。一种减少页面元素个数的方法是…

Canny-VO: 基于几何3D-2D边缘对准的RGB-D视觉里程计

点击上方“小白学视觉”&#xff0c;选择加"星标"或“置顶” 重磅干货&#xff0c;第一时间送达 转自|当SLAM遇见小王同学摘要本文回顾了自由曲线配准的经典问题, 并将其应用于一个有效的称为Canny-VO的RGBD视觉里程计系统, 因为它能有效地跟踪从图像中提取的所有Ca…

不要小看字符串

字符串非常非常常见又重要&#xff0c;而且还有那么多名堂在里面 字符串: 在标准C中&#xff0c;是没有字符串变量的&#xff0c;但是有字符数组。而且标准C带有的标准库函数&#xff1a;string.h中包含了大量的字符串操作函数&#xff0c;当然如果必要的话&#xff0c;你也可以…

html页面调用ico图标,如何在HTML中使用图标字体 - icon font?

日期&#xff1a;2012-8-27 来源&#xff1a;GBin1.com在线演示 本地下载主要特性使用icon font来生成图标相对于基于图片的图标来说&#xff0c;有如下的好处&#xff1a;自由的变化大小自由的修改颜色添加阴影效果IE6也可以支持支持图片图标的其它属性&#xff0c;例如&…

用产品思路建设中台,这走得通吗?| 白话中台

作者 | 王健&#xff0c;ThoughtWorks首席咨询师。 十多年国内外大型企业软件设计开发&#xff0c;团队组织转型经验。一直保持着对技术的热爱&#xff0c;热衷于技术分享。目前专注在企业平台化转型、中台战略规划&#xff0c;微服务架构与实施&#xff0c;大型遗留系统服务化…

任天堂遭史上最严重黑客攻击:完整源代码、设计文档及技术演示泄露

十三 发自 凹非寺量子位 报道 | 公众号 QbitAI任天堂的这一波泄露事件&#xff0c;可以说是相当惨烈。多少文件被泄露&#xff1f;超过2TB。涉及什么内容&#xff1f;完整源代码、设计文档&#xff0c;近乎一切用于构建Wii主机的资料&#xff0c;还包括像N64的技术演示。这次泄…

什么是云到云备份?

C2C备份越来越受欢迎&#xff0c;那么它是什么&#xff1f;如果发生最坏的情况&#xff0c;它如何帮助您的业务&#xff1f; 大多数企业都了解为其本地数据制定强大的备份策略的重要性&#xff0c;但随着越来越多的公司迁移到云&#xff0c;关于如何在云环境中备份数据的神话和…