穿越Redis单线程迷雾:从面试场景到技术内核的解读

news/2024/7/7 21:09:16

目录

​编辑

前言

Redis中的多线程

I/O多线程

Redis中的多进程

结论

延伸阅读


前言

很多人都遇到过这么一道面试题:Redis是单线程还是多线程?这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程,说复杂是因为这个答案其实并不准确。

难道Redis不是单线程?我们启动一个Redis实例,验证一下就知道了。Redis安装部署方式如下所示:

// 下载
wget https://download.redis.io/redis-stable.tar.gz
tar -xzvf redis-stable.tar.gz
// 编译安装
cd redis-stable
make
// 验证是否安装成功
./src/redis-server -v
Redis server v=7.2.4

接下来启动Redis实例,使用命令ps查看所有线程,如下所示:

// 启动Redis实例
./src/redis-server ./redis.conf

// 查看实例进程ID
ps aux | grep redis
root     385806  0.0  0.0 245472 11200 pts/2    Sl+  17:32   0:00 ./src/redis-server 127.0.0.1:6379

// 查看所有线程
ps -L -p 385806
   PID    LWP TTY          TIME CMD
385806 385806 pts/2    00:00:00 redis-server
385806 385809 pts/2    00:00:00 bio_close_file
385806 385810 pts/2    00:00:00 bio_aof
385806 385811 pts/2    00:00:00 bio_lazy_free
385806 385812 pts/2    00:00:00 jemalloc_bg_thd
385806 385813 pts/2    00:00:00 jemalloc_bg_thd

竟然有6个线程!不是说Redis是单线程吗?怎么会有这么多线程呢?

这6个线程的含义你可能不太了解,但是通过这个示例至少说明Redis并不是单线程。

Redis中的多线程

接下来我们逐个介绍上述6个线程的作用:

1)redis-server:

主线程,用于接收并处理客户端请求。

2)jemalloc_bg_thd:

jemalloc 是新一代的内存分配器,Redis底层使用他管理内存。

3)bio_xxx:

以bio前缀开始的都是异步线程,用于异步执行一些耗时任务。其中,线程bio_close_file用于异步删除文件,线程bio_aof用于异步将AOF文件刷到磁盘,线程bio_lazy_free用于异步删除数据(懒删除)。

需要说明的是,主线程是通过队列将任务分发给异步线程的,并且这一操作是需要加锁的。主线程与异步线程的关系如下图所示:

这里我们以懒删除为例,讲解为什么要使用异步线程。Redis是一款内存数据库,支持多种数据类型,包括字符串、列表、哈希表、集合等。思考一下,删除(DEL)列表类型数据的流程是怎样的呢?第一步从数据库字典中删除该键值对,第二步遍历并删除列表中的所有元素(释放内存)。想想如果列表中的元素数目非常多呢?这一步将非常耗时。这种删除方式称为同步删除,流程如下图所示:

针对上述问题,Redis提出了懒删除(异步删除),主线程在收到删除命令(UNLINK)时,首先从数据库字典中删除该键值对,随后再将删除任务分发给异步线程bio_lazy_free,由异步线程执行第二步耗时逻辑。这时候的流程如下图所示:

I/O多线程

难道Redis是多线程?那为什么我们老说Redis是单线程呢?这是因为读取客户端命令请求,执行命令以及向客户端返回结果都是在主线程完成的。不然的话,多线程同时操作内存数据库,并发问题如何解决?如果每次操作之前都加锁,那和单线程又有什么区别呢?

当然这一流程在Redis6.0版本也发生了改变,Redis官方指出,Redis是基于内存的键值对数据库,执行命令的过程是非常快的,读取客户端命令请求和向客户端返回结果(即网络I/O)通常会成为Redis的性能瓶颈。

因此,在Redis 6.0版本,作者加入了多线程I/O的能力,即可以开启多个I/O线程,并行读取客户端命令请求,并行向客户端返回结果。I/O多线程能力使得Redis性能提升至少一倍。

为了开启多线程I/O能力,需要先修改配置文件redis.conf:

io-threads-do-reads yes
io-threads 4

这两个配置含义如下:

  • io-threads-do-reads:是否开启多线程I/O能力,默认为"no";

  • io-threads:I/O线程数目,默认为1,即只使用主线程执行网络I/O,线程数最大为128;该配置应该根据CPU核数设置,作者建议,4核CPU设置2~3个I/O线程,8核CPU设置6个I/O线程。

开启多线程I/O能力之后,重新启动Redis实例,查看所有线程,结果如下:

ps -L -p 104648
   PID    LWP TTY          TIME CMD
104648 104648 pts/1    00:00:00 redis-server
104648 104654 pts/1    00:00:00 io_thd_1
104648 104655 pts/1    00:00:00 io_thd_2
104648 104656 pts/1    00:00:00 io_thd_3
……

由于我们设置了io-threads等于4,所以会创建4个线程用于执行I/O操作(包括主线程),上述结果符合预期。

当然,只有I/O阶段才使用了多线程,处理命令请求还是单线程,毕竟多线程操作内存数据存在并发问题。

最后,开启了I/O多线程之后,命令的执行流程如下图所示:

Redis中的多进程

Redis还有多进程?是的。在某些场景下,Redis也会创建多个子进程来执行一些任务。以持久化为例,Redis支持两种类型的持久化:

  • AOF(Append Only File):可以看作是命令的日志文件,Redis会将每一个写命令都追加到AOF文件。

  • RDB(Redis Database):以快照的方式存储Redis内存中的数据。命令SAVE用于手动触发RDB持久化。想想如果Redis中的数据量非常大,持久化操作必然耗时比较长,而Redis是单线程处理命令请求,那么当命令SAVE的执行时间过长时,必然会影响其他命令的执行。

命令SAVE有可能会阻塞其他请求,为此,Redis又引入了命令BGSAVE,该命令会创建一个子进程来执行持久化操作,这样就不会影响主进程执行其他请求了。

我们可以手动执行命令BGSAVE验证。首先,使用GDB跟踪Redis进程,添加断点,让子进程阻塞在持久化逻辑。如下所示:

// 查询Redis进程ID
ps aux | grep redis
root     448144  0.1  0.0 270060 11520 pts/1    tl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379

// GDB跟踪进程
gdb -p 448144

// 跟踪创建的子进程(默认GDB只跟踪主进程,需手动设置)
(gdb) set follow-fork-mode child
// 函数rdbSaveDb用于持久化数据快照
(gdb) b rdbSaveDb
Breakpoint 1 at 0x541a10: file rdb.c, line 1300.
(gdb) c

设置好断点之后,使用Redis客户端发送命令BGSAVE,结果如下:

// 请求立即返回
127.0.0.1:6379> bgsave
Background saving started

// GDB输出以下信息
[New process 452541]
Breakpoint 1, rdbSaveDb (...) at rdb.c:1300

可以看到,GDB目前跟踪的是子进程,进程ID是452541。也可以通过Linux命令 ps 查看所有进程,结果如下:

ps aux | grep redis
root     448144  0.0  0.0 270060 11520 pts/1    Sl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379
root     452541  0.0  0.0 270064 11412 pts/1    t+   17:19   0:00 redis-rdb-bgsave 127.0.0.1:6379

可以看到子进程的名称是redis-rdb-bgsave,也就是该进程将所有数据的快照持久化在RDB文件。

最后再思考两个问题。

  • 问题1:为什么采用子进程而不是子线程呢?

因为RDB是将数据快照持久化存储,如果采用子线程,主线程与子线程将会共享内存数据,主线程在持久化的同时还会修改内存数据,这有可能导致数据不一致。而主进程与子进程的内存数据是完全隔离的,不存在此问题。

  • 问题2:假设Redis内存中存储了10GB的数据,在创建子进程执行持久化操作之后,此时子进程也需要10GB的内存吗?复制10GB的内存数据,也会比较耗时吧?另外如果系统只有15GB的内存,还能执行BGSAVE命令吗?

这里有一个概念叫写时复制(copy on write),在使用系统调用fork创建子进程之后,主进程与子进程的内存数据暂时还是共享的,但是当主进程需要修改内存数据时,系统会自动将该内存块复制一份,以此实现内存数据的隔离。
命令BGSAVE的执行流程如下图所示:

结论

Redis的进程模型/线程模型还是比较复杂的,这里也只是简单介绍了部分场景下的多线程以及多进程,其他场景下的多线程、多进程还有待读者自己研究。

延伸阅读

书本名称:《 高效使用Redis:一书学透数据存储与高可用集群 》

推荐语: 深入Redis数据结构与底层实现,攻克Redis数据存储与集群管理难题。

作者介绍
李乐:好未来Golang开发专家、西安电子科技大学硕士,曾就职于滴滴,乐于钻研技术与源码,合著有《高效使用Redis:一书学透数据存储与 高可用 集群》《Redis5设计与源码分析》《Nginx底层设计与源码分析》。


http://lihuaxi.xjx100.cn/news/2041672.html

相关文章

五、全局scss变量定义及使用

定义 variable.scss 存放全局变量 // base color $blue:#324157; $light-blue:#3A71A8; $red:#C03639; $pink: #E65D6E; $green: #30B08F; $tiffany: #4AB7BD; $yellow:#FEC171; $panGreen: #30B08F;// 默认菜单主题风格 $base-menu-color:#bfcbd9; $base-menu-color-active:#f…

Linux:Jenkins用户权限和管理

1.下载插件 由于Jenkins的默认权限管理并不是很精细所以我们安装一个插件进行权限的一个管理 插件名称为:Role-based Authorization Strategy 安装完插件我们再去配置一下 进入全局安全配置 选择这个Role-Based Strategy策略然后保存 2.创建角色 我们这里主要使…

dp入门(模板题)

解法一&#xff1a; 双指针&#xff0c;没必要开数组直接边输边算&#xff0c;max至少要2个数&#xff0c;补一个数时的特判 #include <iostream> #include <vector> #include <algorithm> using namespace std; #define endl \nint main() {ios::sync_wit…

C语言自定义类型:结构体的使用及其内存对齐【超详细建议点赞收藏】

目录 1. 结构体类型的声明1.1 结构的声明1.2 结构体变量的创建和初始化1.3 结构的特殊声明---匿名结构体1.4 结构的自引用 2.结构体内存对齐&#xff08;重点&#xff01;&#xff01;&#xff09;2.1 对齐规则2.2 例题讲解2.3 为什么存在内存对齐&#xff1f;2.4 修改默认对齐…

二进制、十进制、八进制、十六进制 各代表的英文字母是什么

二进制、十进制、八进制、十六进制 各代表的英文字母是什么 AllenLeungX 于 2019-07-08 08:42:47 发布 分类专栏&#xff1a; 其它 文章标签&#xff1a; 二进制、十进制、八进制、十六进制 英文和缩写 二进制是Binary&#xff0c;简写为B 八进制是Octal&#xff0c;简写为O 十…

MYSQL--存储过程操作

一&#xff1a;概念&#xff1a; 存储过程实际上对标了JAVA当中的方法&#xff0c;两者是相似的&#xff0c;同时需要注意的一点是&#xff0c;MYSQL仅仅在5.0版本之后才出现这种存储操作的过程&#xff1b; 优点&#xff1a; 1.存储过程能够让运行的速度变得更加迅速&#xff…

Cartographer框架简述

catographer框架分为前端和后端 前端包括雷达数据处理&#xff1b;位姿预测&#xff1b;扫描匹配和栅格地图更新。 后端包括后端&#xff1a;线程池任务与调度&#xff1b;向位姿图添加节点&#xff0c;计算节点的子图内约束和子图间约束&#xff08;回环检测&#xff09;&…

论文阅读《Sylph: A Hypernetwork Framework for Incremental Few-shot Object Detection》

论文地址&#xff1a;https://arxiv.org/abs/2203.13903 代码地址&#xff1a;https://github.com/facebookresearch/sylph-few-shot-detection 目录 1、存在的问题2、算法简介3、算法细节3.1、基础检测器3.2、小样本超网络3.2.1、支持集特征提取3.2.2、代码预测3.2.3、代码聚合…