# [NOI2019] 斗主地 洛谷黑题题解

news/2024/7/7 22:03:03

[NOI2019] 斗主地

题目背景

时限 4 秒 内存 512MB

题目描述

小 S 在和小 F 玩一个叫“斗地主”的游戏。

可怜的小 S 发现自己打牌并打不过小 F,所以他想要在洗牌环节动动手脚。

一副牌一共有 n n n 张牌,从上到下依次标号为 1 ∼ n 1 \sim n 1n。标号为 i i i 的牌分数 f ( i ) f(i) f(i)。在本题, f ( i ) f(i) f(i) 有且仅有两种可能: f ( i ) = i f(i) = i f(i)=i f ( i ) = i 2 f(i) = i^2 f(i)=i2

洗牌的方式和我们日常生活中的比较类似,以下我们用形式化的语言来定义: 洗牌环节一共分 m m m 轮,这 m m m 轮洗牌依次进行。第 i i i 轮洗牌时:

  1. 小 S 会拿出从最上面往下数的前 A i A_i Ai 张牌。这样这副牌就被分成了两堆:第一堆 是最上面的 A i A_i Ai 张牌,第二堆是剩下的 n − A i n-A_i nAi 张牌,且这两堆牌内相对顺序不变。 特别地,当 A i = n A_i = n Ai=n A i = 0 A_i = 0 Ai=0 时,有一堆牌是空的。
  2. 接下来对两堆牌进行合并,从而产生新的第三堆牌。当第一堆牌还剩下 X X X 张,第二堆牌还剩下 Y Y Y 张的时候,以 X X + Y \dfrac{X}{X+Y} X+YX 的概率取出第一堆牌的最下面的牌,并将它 放入新的第三堆牌的最上面, Y X + Y \dfrac{Y}{X+Y} X+YY 的概率取出第二堆牌的最下面的牌,并将它放入新的第三堆牌的最上面
  3. 重复操作 2 2 2,一直取到两堆牌都为空为止。这样我们就完成了一轮洗牌。

因为洗牌过程是随机的,所以小 S 发现自己没法知道某个位置上具体是哪张牌。但小 S 想问你在经历了这 m m m 轮洗牌后,某个位置上的牌的期望分数是多少。小 S 一共会问你 Q Q Q 个这样的问题。

输入格式

输入的第一行包含三个正整数 n , m , t y p e n, m, type n,m,type,分别表示牌的数量,洗牌的轮数与 f ( i ) f(i) f(i) 的类型。当 t y p e = 1 type = 1 type=1 时, f ( i ) = i f(i) = i f(i)=i。当 t y p e = 2 type = 2 type=2 时, f ( i ) = i 2 f(i) = i^2 f(i)=i2

接下来一行,一共 m m m 个整数,表示 A 1 ∼ A m A_1 \sim A_m A1Am

接下来一行一个正整数 Q Q Q,表示小 S 的询问个数。 接下来 Q Q Q 行,每行一个正整数 c i c_i ci,表示小 S 想要知道从上往下第 c i c_i ci 个位置上的牌的期望分数

保证 1 ≤ c i ≤ n 1 \leq c_i \leq n 1cin

输出格式

输出一共 Q Q Q 行,每行一个整数,表示答案在模 998244353 998244353 998244353 意义下的取值。

即设答案化为最简分式后的形式为 a b \dfrac{a} {b} ba,其中 a a a b b b 互质。输出整数 x x x 使得 b x ≡ a ( m o d 998244353 ) bx \equiv a \pmod{998244353} bxa(mod998244353) 0 ≤ x < 998244353 0 ≤ x < 998244353 0x<998244353。可以证明这样的整数 x x x 是唯一的。

样例 #1

样例输入 #1

4 1 1
3
1
1

样例输出 #1

249561090

提示

更多样例

您可以通过附加文件获得更多样例。

样例 2

见附加文件中的 landlords/landlords2.inlandlords/landlords2.ans

样例 3

见附加文件中的 landlords/landlords3.inlandlords/landlords3.ans

样例输入输出 1 解释

  • 1 4 \dfrac{1}{4} 41 的概率从上到下的最终结果是 { 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} {1,2,3,4}
  • 1 4 \dfrac{1}{4} 41 的概率从上到下的最终结果是 { 1 , 2 , 4 , 3 } \{1, 2, 4, 3\} {1,2,4,3}
  • 1 4 \dfrac{1}{4} 41 的概率从上到下的最终结果是 { 1 , 4 , 2 , 3 } \{1, 4, 2, 3\} {1,4,2,3}
  • 1 4 \dfrac{1}{4} 41 的概率从上到下的最终结果是 { 4 , 1 , 2 , 3 } \{4, 1, 2, 3\} {4,1,2,3}

所以最终有 1 4 \dfrac{1}{4} 41 的概率第一个位置是 4 4 4,有 3 4 \dfrac{3} {4} 43 的概率第一个位置是 1 1 1,所以第一个位置的期望分数是 7 4 \dfrac{7}{ 4} 47

为了帮助你们更直观地了解洗牌的过程,我们在下面画出了结果是 { 1 , 4 , 2 , 3 } \{1, 4, 2, 3\} {1,4,2,3} 的过程。

数据规模与约定

对于全部的测试点,保证 3 ≤ n ≤ 1 0 7 3\le n \le 10^7 3n107 1 ≤ m , Q ≤ 5 × 1 0 5 1\le m,Q\le5\times 10^5 1m,Q5×105 0 ≤ A i ≤ n 0\le A_i\le n 0Ain t y p e ∈ { 1 , 2 } type\in \{1,2\} type{1,2}

每个测试点的具体限制见下表:

测试点 n n n m m m t y p e = type= type=其他性质
1 1 1 ≤ 10 \le 10 10 ≤ 1 \le 1 1 1 1 1
2 2 2 ≤ 80 \le 80 80 ≤ 80 \le 80 80 1 1 1
3 3 3 ≤ 80 \le 80 80 ≤ 80 \le 80 80 2 2 2
4 4 4 ≤ 100 \le 100 100 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 2 2 2所有 A i A_i Ai 相同
5 5 5 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 1 1 1
6 6 6 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 1 1 1
7 7 7 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 1 1 1
8 8 8 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 2 2 2
9 9 9 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 2 2 2
10 10 10 ≤ 1 0 7 \le 10^7 107 ≤ 5 × 1 0 5 \le 5\times 10^5 5×105 2 2 2

请注意我们并没有保证 Q ≤ n Q\le n Qn

提示

这里我们给出离散型随机变量 X X X 的期望 E [ x ] \mathbb{E}[x] E[x] 的定义:

设离散随机变量 X X X 的可能值是 X 1 , X 2 , … X k X_1,X_2,\ldots X_k X1,X2,Xk P r [ X 1 ] , P r [ X 2 ] , … , P r [ X k ] Pr[X_1],Pr[X_2],\ldots,Pr[X_k] Pr[X1],Pr[X2],,Pr[Xk] X X X 取对应值的概率,则 X X X 的期望为:
E [ x ] = ∑ i = 1 k X i × P r [ X i ] \mathbb{E}[x]=\sum^k_{i=1}X_i\times Pr[X_i] E[x]=i=1kXi×Pr[Xi]

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int kcz=998244353;
const int maxn=10000005;
ll a,b,c,f[maxn];
int n;
inline ll qpow(ll a,ll k)
{
    ll res=1;
    while(k)
    {
        if(k&1) res=res*a%kcz;
        if(k>>=1) a=a*a%kcz;
    }
    return res;
}
inline ll calc(ll x) { return ((a*x+b)%kcz*x+c)%kcz; } // 算第x个数的期望
int main()
{
    int m,tp,i;
    ll _,__,t1,t2,t3,t,___,sqn;
    freopen("landlords.in","r",stdin),freopen("landlords.out","w",stdout);
    scanf("%d%d%d",&n,&m,&tp),sqn=n*(ll)n%kcz;
    _=qpow(n-1,kcz-2),__=qpow(n,kcz-2),___=qpow((-sqn+3*n-2)%kcz,kcz-2);
    if(tp==1) a=c=0,b=1;
    else a=1,b=c=0; // x_i=ai^2+bi+c
    while(m--)
    {
        scanf("%lld",&t);
        if(t==0 || t==n) continue;
        t1=(calc(1)*t+calc(t+1)*(n-t))%kcz*__%kcz; // 第一个
        t2=((calc(2)*(t-1)+calc(t+1)*(n-t))%kcz*t+(calc(1)*t+calc(t+2)*(n-t-1))%kcz*(n-t))%kcz*__%kcz*_%kcz; // 第二个
        t3=(calc(t)*t+calc(n)*(n-t))%kcz*__%kcz; // 第n个
        a=((2-n)*t1+(n-1)*t2-t3)%kcz*___%kcz;
        b=((sqn-4)*t1+(1-sqn)*t2+3*t3)%kcz*___%kcz;
        c=((4*n-2*sqn)*t1+(sqn-n)*t2-2*t3)%kcz*___%kcz; // 极其丑的差值
    }
    for(i=1;i<=n;i++)
        f[i]=(calc(i)+kcz)%kcz;
    scanf("%d",&m);
    while(m--)
        scanf("%lld",&t),printf("%lld\n",f[t]);
    fclose(stdin),fclose(stdout);
    return 0;
}
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int kcz=998244353;
const int maxn=10000005;
ll a,b,c,a_,b_,c_,fac[maxn],inv[maxn],inv_fac[maxn];
int n;
inline ll f(ll x) { return (a+b*(x-1)+c*(x-1)%kcz*(x-2))%kcz; } // 算第x个数的期望
inline ll C(int n,int m) { return (m>=0 && m<=n)?fac[n]*inv_fac[m]%kcz*inv_fac[n-m]%kcz:0; } // 判一下0的情况
inline ll invC(int n,int m) { return inv_fac[n]*fac[m]%kcz*fac[n-m]%kcz; }
int main()
{
    int i,q,op,A;
    ll t;
    freopen("landlords.in","r",stdin),freopen("landlords.out","w",stdout);
    scanf("%d%d%d",&n,&q,&op);
    if(op==1) a=b=1,c=0; // a_i=a+b*(i-1)+c*(i-1)*(i-2)
    else a=1,b=3,c=1;
    fac[0]=inv_fac[0]=inv[1]=fac[1]=inv_fac[1]=1;
    for(i=2;i<=n;i++)
    {
        fac[i]=fac[i-1]*i%kcz;
        inv[i]=-(kcz/i)*inv[kcz%i]%kcz;
        inv_fac[i]=inv_fac[i-1]*inv[i]%kcz;
    }
    while(q--)
    {
        scanf("%d",&A);
        a_=(a+b*A+c*A%kcz*(A-1ll))%kcz; // 平移x->x+A
        b_=(b+c*2*A)%kcz;
        c_=c;
        t=invC(n,A);
        a=(a*C(n-1,A-1)+a_*C(n-1,n-A-1))%kcz*t%kcz; // 更新系数
        b=(b*C(n-2,A-2)+b_*C(n-2,n-A-2))%kcz*t%kcz;
        c=(c*C(n-3,A-3)+c_*C(n-3,n-A-3))%kcz*t%kcz;
    }
    scanf("%d",&q);
    while(q--)
        scanf("%d",&i),printf("%lld\n",(f(i)+kcz)%kcz);
    fclose(stdin),fclose(stdout);
    return 0;
}
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=500000+10;
const int maxm=10000000+10;
const int mod=998244353;
const int inv2=(mod+1)>>1;
int n,m,q,type;ll A,B,C,f[10][10],g[10],h[10],w[10],inv[maxm];

inline ll F(int x) {return (A*x%mod*x+B*x+C)%mod;}

int main()
{
    scanf("%d%d%d",&n,&m,&type);
    inv[0]=inv[1]=1;
    for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
    if(type==1) A=0,B=1,C=0;
    else A=1,B=0,C=0;
    int tmp;ll X,Y,Z;
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&tmp);
        for(int j=1;j<=3;j++) g[j]=F(j),h[j]=F(j+tmp),w[j]=0;
        for(int j=0;j<3;j++)
            for(int k=0;k<3;k++) f[j][k]=0;
        f[0][0]=1;
        for(int j=0;j<3;j++)
            for(int k=0;k<3;k++)
            {
                if(j+k>=3) break;
                if(j<tmp)
                {
                    ll val=f[j][k]*(tmp-j)%mod*inv[n-j-k]%mod;
                    (f[j+1][k]+=val)%=mod;
                    (w[j+k+1]+=val*g[j+1])%=mod;
                }
                if(k<n-tmp)
                {
                    ll val=f[j][k]*(n-tmp-k)%mod*inv[n-j-k]%mod;
                    (f[j][k+1]+=val)%=mod;
                    (w[j+k+1]+=val*h[k+1])%=mod;
                }
            }
        X=w[1];Y=w[2];Z=w[3];
        A=((Z-2*Y+X)*inv2%mod+mod)%mod;
        B=((8*Y-5*X-3*Z)*inv2%mod+mod)%mod;
        C=((3*X-3*Y+Z)%mod+mod)%mod;
    }
    scanf("%d",&q);
    while(q--)
    {
        scanf("%d",&tmp);
        printf("%lld\n",F(tmp));
    }
    return 0;
}

http://lihuaxi.xjx100.cn/news/1988220.html

相关文章

Kong网关初次尝试

本次目的&#xff1a;研究市面上的API网关 安装 Docker 部署 &#xff1a; 1. postgre 2. kong migrations bootstrap 3. kong 问题是migrations时会报lua的错误&#xff0c;后面调研一下。 转发流程 1. 注册一个service&#xff0c;指定服务的ip 端口等信息。 2. 设定一个…

mysql高可用设计,主库挂了怎么办

实际上高可用就是系统能提供的一种无故障服务能力&#xff0c;就是避免宕机出现不能服务的场景。 首先来说对于无状态服务的高可用设计是比较简单的&#xff0c;发现有不能用的就直接停了换别的服务器就行&#xff0c;比如Nginx。这里说一下无状态服务就是不需要记录你的状态、…

分享7款有关前端的动画特效(附静态效果图及在线演示)

分享7款有趣也实用的前端动画特效 其中有CSS动画、canvas动画、js小游戏等等 下方效果图可能不是特别的生动 那么你可以点击在线预览进行查看相应的动画特效 同时也是可以下载该资源的 canvas破碎动画特效 基于canvas实现的一款破碎动画特效 点击屏幕时 背景出现一道裂痕 之后…

“趣味夕阳,乐享生活”小组活动(第二节)

立冬以来&#xff0c;天气日渐寒冷&#xff0c;气温变化较大&#xff0c;各种传染病多发&#xff0c;为进一步增强老年人冬季预防传染病保健意识及科学合理健康的生活方式。近日&#xff0c;1月22日&#xff0c;南阳市人人社工灌涨站开展了“趣味夕阳&#xff0c;乐享生活”小组…

React中使用LazyBuilder实现页面懒加载方法一

前言&#xff1a; 在一个表格中&#xff0c;需要展示100条数据&#xff0c;当每条数据里面需要承载的内容很多&#xff0c;需要渲染的元素也很多的时候&#xff0c;容易造成页面加载的速度很慢&#xff0c;不能给用户提供很好的体验时&#xff0c;懒加载是优化页面加载速度的方…

Vue3 Teleport 将组件传送到外层DOM位置

✨ 专栏介绍 在当今Web开发领域中&#xff0c;构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架&#xff0c;正是为了满足这些需求而诞生。它采用了MVVM架构模式&#xff0c;并通过数据驱动和组件化的方式&#xff0c;使…

[已解决]504 Gateway Time-out 网关超时

文章目录 问题&#xff1a;504 Gateway Time-out 504 Gateway Time-out 网关超时思路解决 问题&#xff1a;504 Gateway Time-out 504 Gateway Time-out 网关超时 思路 网上的常规思路是修改nginx配置文件,增加请求执行时间,试过没有用 keepalive_timeout 600; fastcgi_con…

字符金字塔(C语言刷题)

个人博客主页&#xff1a;https://blog.csdn.net/2301_79293429?typeblog 专栏&#xff1a;https://blog.csdn.net/2301_79293429/category_12545690.html 题目描述 请打印输出一个字符金字塔&#xff0c;字符金字塔的特征请参考样例 输入描述: 输入一个字母&#xff0c;保…