大创项目推荐 深度学习的水果识别 opencv python

news/2024/7/5 4:00:35

文章目录

  • 0 前言
  • 2 开发简介
  • 3 识别原理
    • 3.1 传统图像识别原理
    • 3.2 深度学习水果识别
  • 4 数据集
  • 5 部分关键代码
    • 5.1 处理训练集的数据结构
    • 5.2 模型网络结构
    • 5.3 训练模型
  • 6 识别效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习的水果识别 opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd

train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []

for i in os.listdir(train_dir):
    for image_filename in os.listdir(train_dir + i):
        fruits.append(i) # name of the fruit
        fruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
import seaborn as sns
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from glob import glob
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
plt.imshow(img)
plt.axis("off")
plt.show()

array_image = img_to_array(img)

# shape (100,100)
print("Image Shape --> ", array_image.shape)

# 131个类目
fruitCountUnique = glob(train_dir + '/*' )
numberOfClass = len(fruitCountUnique)
print("How many different fruits are there --> ",numberOfClass)

# 构建模型
model = Sequential()
model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Conv2D(32,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Conv2D(64,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation("relu"))
model.add(Dropout(0.5))

# 区分131类
model.add(Dense(numberOfClass)) # output
model.add(Activation("softmax"))
model.compile(loss = "categorical_crossentropy",

              optimizer = "rmsprop",

              metrics = ["accuracy"])

print("Target Size --> ", array_image.shape[:2])

5.3 训练模型

train_datagen = ImageDataGenerator(rescale= 1./255,
                                   shear_range = 0.3,
                                   horizontal_flip=True,
                                   zoom_range = 0.3)

test_datagen = ImageDataGenerator(rescale= 1./255)
epochs = 100
batch_size = 32
train_generator = train_datagen.flow_from_directory(
                train_dir,
                target_size= array_image.shape[:2],
                batch_size = batch_size,
                color_mode= "rgb",
                class_mode= "categorical")

test_generator = test_datagen.flow_from_directory(
                test_dir,
                target_size= array_image.shape[:2],
                batch_size = batch_size,
                color_mode= "rgb",
                class_mode= "categorical")

for data_batch, labels_batch in train_generator:
    print("data_batch shape --> ",data_batch.shape)
    print("labels_batch shape --> ",labels_batch.shape)
    break

hist = model.fit_generator(
        generator = train_generator,
        steps_per_epoch = 1600 // batch_size,
        epochs=epochs,
        validation_data = test_generator,
        validation_steps = 800 // batch_size)

#保存模型 model_fruits.h5
model.save('model_fruits.h5')

顺便输出训练曲线

#展示损失模型结果
plt.figure()
plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Loss", color = "darkred", size = 13)
plt.legend()
plt.show()

#展示精确模型结果
plt.figure()
plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Accuracy", color = "darkred", size = 13)
plt.legend()
plt.show()

在这里插入图片描述

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd

from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
                                    shear_range = 0.3,
                                    horizontal_flip=True,
                                    zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()

array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size= array_image.shape[:2],
        batch_size = batch_size,
        color_mode= "rgb",
        class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

fig = plt.figure(figsize=(16, 16))
axes = []
files = []
predictions = []
true_labels = []
rows = 5
cols = 2

# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
    """function loads a random image from a random folder in our test path"""
    folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
    random_directory = np.random.randint(0, len(folders))
    path_class = folders[random_directory]
    file_path = os.path.join(path, path_class)
    file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
    random_file_index = np.random.randint(0, len(file_names))
    image_name = file_names[random_file_index]
    final_path = os.path.join(file_path, image_name)
    return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class

def draw_test(name, pred, im, true_label):
    BLACK = [0, 0, 0]
    expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
    cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (255, 0, 0), 2)
    cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (0, 255, 0), 2)
    return expanded_image
IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
    path = "./Test"
    img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
    files.append(final_path)
    true_labels.append(true_label)
    x = image.img_to_array(img)
    x = x * 1./255
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
    image = cv2.imread(files[i])
    image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
    axes.append(fig.add_subplot(rows, cols, i+1))
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.grid(False)
    plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


http://lihuaxi.xjx100.cn/news/1974219.html

相关文章

实验二 体系结构

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…

贵阳贵安推进“数字活市”战略成效明显

作者:黄玉叶 近年来,贵阳贵安将数字经济确立为高质量发展的主路径之一,把推进“数字活市”作为实施主战略、实现主定位,特别是建设“数字经济发展创新区核心区”的重要抓手,从改革、发展、民生三个维度纵深推进“数字活…

k8s的对外服务--ingress

service作用体现在两个方面 1、集群内部 不断跟踪pod的变化,更新endpoint中的pod对象,基于pod的IP地址不断变化的一种服务发现机制 2、集群外部 类似负载均衡器,把流量ip端口,不涉及转发url(http,https&a…

触摸按键控制LED灯

目录 1.理论 2.代码 2.1 touch_ctrl_led.v 2.2 tb_touch_ctrl_led 1.理论 以上的波形图的touch_flag是采用组合逻辑的方式产生的。 以上的touch_flag是采用时序逻辑产生的,时序逻辑会延迟一拍。 以上是上升沿和下降沿的组合逻辑和时序逻辑实现,逻辑或…

C++设计模式(李建忠)笔记3

C设计模式(李建忠) 本文是学习笔记,如有侵权,请联系删除。 参考链接 Youtube: C设计模式 Gtihub源码与PPT:https://github.com/ZachL1/Bilibili-plus 豆瓣: 设计模式–可复用面向对象软件的基础 文章目录 C设计模…

Qt固件映像 Raspberry Pi 嵌入式C++(Qt)编程

Qt C创建突围游戏应用示例 在我们的游戏中,我们有一个桨、一个球和三十块砖。 计时器用于创建游戏周期。 我们不处理角度,我们只是改变方向:上、下、左、右。 Qt5 库是为创建计算机应用程序而开发的。尽管如此,它也可以用来创建…

打造更智能的应用 - 机器学习和Andorid

打造更智能的应用 - 机器学习和Andorid 一、关于机器学习和Andorid二、使用 Gemini 让您的 Android 应用如虎添翼2.1 Gemini API2.2 Android AICore 三、现成可用的还是自定义的机器学习3.1 机器学习套件 SDK 的常见用户流3.2 高性能自定义机器学习 四、机器学习套件 SDK&#…

datavrap可视化设计器使用手册

datavrap使用手册 一、产品简介 datavrap是一个动态数据可视化设计器,通过简单配置生成可视化视频,图片和gif。 站长:B站UP,夹克mnnm 这个产品的灵感是在做B站视频时,觉得每次通过修改代码录屏实现视频制作太过于繁琐&…